
Scalable Data Science
Prof. Sourangshu Bhattacharya

Department of Computer Science and Engineering
Indian Institute of Technology, Kharagpur

Lecture – 21a
Stochastic Optimization

Hello, everyone. Welcome to the twenty first lecture of NPTEL course on Scalable Data

Science.  I  am  Professor  Sourangshu  Bhattacharya  from  Computer  Science  and

Engineering  Department  at  IIT,  Kharagpur.  So,  today  we  will  be  discussing  about

Stochastic Optimization.

(Refer Slide Time: 00:36)

So, in the previous lectures, we have discussed about the big data platforms and we have

done programming on both hadoop and spark and we have seen the internal and we have

also discussed about the scalable and distributed machine learning.



(Refer Slide Time: 00:54)

In this lecture, we will discuss about the stochastic gradient descent, then we will look at

the convergence of stochastic  gradient  descent,  then we shall  see the mini batch and

distributed  version  so,  stochastic  gradient  descents,  then  we shall  see some practical

considerations.  And finally, we will  see some advance recent  advancements  or  some

improvements that have come over the last 5 years or so, on SGD which make them all

the more interesting towards machine learning and deep learning, ok.

(Refer Slide Time: 01:39)



So, just so, we have already seen this so, much of machine learning is optimization. So,

for example, linear classification; so, the first problem we are looking at here is linear

classification with support vector machines and basically what happens is after you go

through the model specifications and loss formulation,  you end up with this problem

where you want to calculate  the parameters  w which are your optimization variables

given the data set. So, given the datasets x i and y i you have to calculate the w and the xi

i  which are the slag variables  for  finally, performing the classification  using support

vector machines.

 Another  very  important  class  of  methods  is  the  maximum  likelihood  parameter

estimation.  So,  given  any  probabilistic  model  p  theta  which  is  basically  defining  a

probability distribution over the random variables x i; x i are the random variables which

are the observed quantity. So, these are the observed quantities. So, for example, this

could be the input in case of regression model or these could be the input in case of any

general problem for example, something like collaborative filtering model and so on and

so forth or some classification model and so on and so forth.

So, for any random observed variable, you can define a probability distribution p theta

over these observed variables, where this probability distribution is a function of some

parameters theta. So, for example, in case of logistic regression the parameters happen to

be the weight vectors. And, then you calculate what is called the log likelihood of the

parameters which happen to be or rather the log likelihood which is a function of the

parameters, but also a function of the input data set which is of size n and then with

respect to this input data set you want to calculate the whole log likelihood and then

which is the sum over the individual instances of the data set and this you can derive

under  the assumption that  your examples  are  IID that  is  independent  and identically

distributed.

And, once you have this form of log likelihood you your job is to basically find the

parameter theta which maximizes this log likelihood. So, this is called the maximum

likelihood estimate and this also turns out typically to be an optimization problem and

then there are unsupervised learning problems like K-Means clustering where also your

objective function is can be written as a optimization problem.



(Refer Slide Time: 05:14)

So, what is stochastic optimization? So, one way to think of machine learning problems

is that you want to minimize the expected loss of a particular set of a particular set of

random variables. So, let us say your input random variables are x and y which is the

typical case in case of supervised learning, where y is the label and x is the input features

and you want to minimize a loss function of a hypothesis h, which is the function that

you want to learn basically h is the function that you want to learn and the loss function

provides a kind of penalty for not exactly predicting the random variable y and then you

want to minimize this loss function with respect to h, ok. Given the samples now you are

given the samples x i and y i from a particular distribution.

Now, here I have written this term expectation. So, what we are trying to say here is that

in general, we want our x and y are coming from some probability distribution p. So,

they are coming from some probability distribution P and you want to minimize this loss

function  expected  value  of  this  loss  function  when  x  and  y  are  drawn  from  this

probability distribution. But, what you end up doing is you end up getting these samples

x i and y i from this probability distribution and then you minimize the empirical loss

function which is basically the summation over i is equal to 1 to m and then loss of h of x

i comma y i, ok. So, this is the empirical loss function.

Now, the question comes that can we address the original problem of minimizing the

expected loss. This also ties in with the generalization error and so on and so forth and



so, for the time being we can assume that the loss function is convex for simplicity. So,

so we will see how we can go about doing this ok.

(Refer Slide Time: 08:14)

So, the first thing that we do is what is called the batch gradient descent, right. So, in

case of batch gradient  descent what we do is we calculate  the derivative of the loss

function which is same as the. So, the derivative of the total loss function, so, derivative

of the so, if we were to let us say differentiate with respect to w the sum over i is equal to

1 to n and loss of h of x i comma y i. This is same as just taking sum over i is equal to 1

to n and then derivative of loss of h of x i comma y i. So, these two are equivalent,

because derivative is you can because the derivative function is the sum derivative or

sum of functions is sum of derivative of functions.

So, using that property we can write it like this ok. So, this is our batch gradient descent

or sub gradient descent as the case may be when you want to minimize the regularized

loss function, ok. So, here notice that every update. So, this k determines an update for

the parameters. Notice that every update requires you to calculate this loss over the entire

training set. So, over all n you have to calculate the loss, ok. So, this is very slow when n

is very large.



(Refer Slide Time: 10:27)

So, what is the alternative? We have already looked at it briefly. So, the alternative is to

use the stochastic sub gradient descent. Now, what is stochastic sub gradient descent? It

is kind of you can think of it as you optimize one example at a time. So, you remember

that  our  problem  of  minimizing  the  log  likelihood  is  the  same  as  you  know  the

optimizing  the  expected  loss  or  our  problem of  learning  is  same as  minimizing  the

expected loss.

Now, it is a question of how many samples you want to take from this expected loss. So,

one simple alternative is you take one sample at a time and minimize, ok. So, that is what

the stochastic sub gradient descent is. So, you choose the samples in random order. So,

you do not have any particular order ok, you choose the samples in random order and

then your update is just using x i and y i. So, you are using one example to calculate loss

only on one example and then you are using that to update the parameter w, ok. So, this

is your stochastic gradient descent.



(Refer Slide Time: 12:04)

Now, this  is  so,  this  is  the update.  So,  for  1  to  n so,  you can iterate  and now your

iterations can be also over all the examples. So, your iterations are now divided into

epochs. So, one epoch is when you have iterated over all the examples and then you can

do multiple  epochs also in random order, ok.  So, basically  we will  come to how to

practically actually implement SGD and how things work practically, but another way of

thinking about the same process is that you are doing some kind of online learning, ok.

So, what is online learning? Online learning means that whenever you get one single

example for training you immediately update the parameters, ok. So, for example, in so,

for example, you are trying to train a spam filter. So, instead of you know looking at a

whole data set of spam emails and non spam emails, you can just look at one spam email

and update the parameters and then the next spam mail comes again you look at that and

you update the parameter to once more. So, this is the main idea behind online learning

that instead of looking at a batch of examples you will look at one example at a time, ok.

Now, stochastic  gradient  descent  allows you to in some sense to perform this  online

learning also. So, this is in some sense online learning algorithm. So, the great thing

about, so, there has been many many online learning algorithms for example, there has

been  the  very  famous  online  learning  algorithm  called  perceptron  which  perceptron

which is a very famous online learning algorithm for classification, ok. So, there have

been many many online learning algorithms, but not all of them we are guaranteed to



always converge ok. So, for example, it is well known that perceptron diverges in case of

in case of the training data set which is not linearly separable, ok.

So, so, in this case stochastic gradient descent the advantage of this is it is guaranteed to

converge for all convex loss function. So, we will go through the convergence proof in a

moment, but just note that it is not clear that convergence will always. So, in what sense

the convergence will happen is a little bit you have to be careful, ok.

(Refer Slide Time: 15:14)

So, basically this is your stochastic gradient descent that. So, we will now go into the

convergence proof of stochastic gradient descent before going into other things. So, so,

here  for  simplicity  what  I  will  describe  is  somewhat  simpler  proof.  So,  somewhat

different version of SGD for which we will provide the proof of convergence because it

is simple to provide the proof, ok. So, as usual you have a data set of m points and you

have the total  laughs function which is  a sum of L loss functions and you have the

parameter theta and you have the input x i and y i.

Now, we can assume that for linear models your predictor is nothing, but some theta

transpose phi of x i even though this is not exactly necessary, for the proof to go through,

but we can assume this, ok. And, now we assume that this data set d is drawn I id from

some distribution P. So, this is the first assumption we have to hold we have to make, ok.

So,  we our proof  will  work under  this  assumption  and of course,  our problem is  to



minimize the total loss function which is a function of both the parameter and the data

set and we have to minimize it with respect to the parameter theta.

(Refer Slide Time: 16:56)

And, this is the algorithm. So, the algorithm is you have the input theta a input D and you

have to output theta bar, ok. Now, this is your output learnt parameter you initialize the

parameter theta to theta 0 and then for you run this algorithm for capital T many time

steps and for capital T many time steps you do this update which we have discussed also

earlier that your theta t plus one becomes theta t minus this eta t and then gradient of the

loss function with respect to theta at that point in time, ok. So, whatever the parameters

of theta are at that point in time the gradient with respect to that, ok.

And, then this is one interesting change how usually the stochastic gradient descent is

implemented is that instead of returning. So, normally you would just return theta capital

T which is the final theta ok, but now instead of returning that theta capital T we are

returning the weighted average of the step size weighted theta T and then the divided by

the summation of the step size. So, you can think about this as you are you have this

theta 1, theta 2 and then theta capital T you have this many parameters which you have

seen throughout the stochastic gradient descent algorithm, and now you are you have

also seen the learning rates which are of course, positive which is eta 1, eta 2 and like

this eta t eta capital T.



And, now you divide them all by you know sum over eta t, ok. So, you are basically

making a probability distribution out of this learning rate and then you are taking the

weighted average with respect  to  this  probability  distribution  as the final  output.  So,

instead of putting all your weight on the final distribution you are just taking a weighted

average over all the distributions, ok. So, you can clearly see that if this theta T provides.

So, what we will show ok. So, let me go to the next one ok.

(Refer Slide Time: 19:49)

So, now s theta is the expected loss which we defined in the first class. So, with respect

to this probability distribution P from which this x and y are drawn we are taking this

weighted  average  of  the  whole  loss  function  with  respect  to  this,  and  then  this  the

minimum with respect to theta we are calling that s star. So, this is the kind of the best

loss, ok. So, the best expected loss that you can get and this is the reported loss in some

sense it is a reported loss, right.

So, at the end of running the algorithm the loss that you would get expected value of that.

Now, why is there an expectation? Expectation is because depending on the data set your

theta may change, right. So, because you are taking a different permutation of the data

set and so on, your theta bar may change and then the question is that if you have if you

have if you take expectation with respect to all possible such ways of you know taking

theta bar and everything else and then calculate the loss which is this expected loss over

the data points then this difference. So, so this is going to be the minimum by definition



because this is where it is minimum. So, the difference from the minimum; so, this is

going to be somewhat bigger than this the amount by which this is going to be bigger is

bounded by this quantity, ok.

Now, what is this quantity? So, the first quantity is that this R which is the difference

between the initial theta 0 and theta star, ok. So, initial starting point and the so, our

initial parameter and the optimal set of parameters for this problem, ok. So, this is a finite

number R, ok, this is not very far. So, if you are starting somewhere so, if you are this is

your space and you are starting somewhere here and this is your theta star this is your

theta star ok, then and this is your theta 0. So, whatever this difference is and the length

of that is this R and L is another number which is the maximum of gradient of loss, ok.

So, the maximum loss you can incur the gradient of that.  Again,  this  is  also we are

assuming that this is bounded because you cannot give infinite loss to some number. So,

both of the both R and L are bounded number.

If this is the case now what it is saying is that as your iterations increase as you go from t

is equal to 1 to capital T this number is bounded by this. So, R square plus L square times

this  number  which  is  summation  of  eta  t  square  divided  by  this  number  which  is

summation of eta t. So, now, when will this when so. So, suppose now I may capital T

tend to infinity and under this limiting case I make this following assumption that my

summation over t is equal to 1 to capital T eta t also tends to infinity. So, I choose my

learning rate parameter eta t such that if I take infinite many time steps the summation

over the learning rate will also go to infinity, but summation over t is equal to 1 to capital

T eta t square is finite. So, this is strictly less than infinity. So, this is some finite number

ok. So, this is some finite number ok.

If this is the case then as you can see this term will go to 0, because the denominator will

go to 0 and the numerator is some finite number, ok. So, it may be a very large finite

number, but it is a finite number, but the denominator as you increase capital T will go to

0. So, the ratio will the denominator will go to infinity. So, the denominator will go to

infinity because this thing will go to infinity, but your numerator remains finite, so, the

whole  thing  goes  to  0.  Hence  this  difference  goes  to  0;  hence  we can  say  that  this

expected loss of this quantity is very close to the actual optimal loss that we can get. So,

in  this  sense  in  the  same  expected  sense  the  stochastic  gradient  descent  algorithm

converges ok.



(Refer Slide Time: 25:58)

Now, how will we show this. So, first we define these two quantities first is this r t which

is this residual of theta t minus theta star. So, this is in some sense how far away is your

t-th iterate of the parameter which is theta t from the optimal parameter, and the second

quantity is of course, what is the value of your gradient, ok. So, this is given by g t. Now,

if we plug in so, we want to calculate what is r t square, ok. So, r t square is nothing, but

or rather we want to calculate r t plus 1 square, ok. So, this is nothing, but theta t plus 1

minus theta star whole square.

Now, we want  to  write  the  update  the  gradient  descent  update,  ok.  So,  what  is  the

gradient descent update? It is theta t minus eta times so, here minus theta times eta times

g t or eta t times g t rather and then minus theta star whole square. Now, if we take so, we

want to club these two terms together so, and then if we club these two terms together

you see that it becomes r t. So, this is something. So, so let me write it out. So, we have

this equals whole square plus eta t square g t square minus twice eta t g t transpose theta t

minus theta star, ok. Now, this is nothing, but what we have here ok. So, this is just r t

square. So, this term is just r t square, ok.



(Refer Slide Time: 29:01)

So, now we want to bound this term expectation of r t plus 1 square minus r t square and

we assume. So, we as so, we assert that this is nothing, but eta t square L square plus this

term. Now, how do we get this? So, note that from here now we have to provide a kind

of lower bound or rather a kind of upper bound on these g t transpose theta star minus

theta t, ok. So, we want to provide this upper bound over this or in other word we want to

provide an upper bound over this theta t minus theta star. So, we want to provide an

upper bound over theta t minus theta star, ok. And, this is nothing, but because of the

because of the convexity of the loss function S because S is a convex loss function we

have already seen that this means that this is going to be greater than or equal to or rather

this is going to be less than or equal to S star minus S t.

So, you see that. So, this is what is written here and if you apply this inequality and the

other inequality that you apply is this norm of g t square. So, norm of g t square is less

than or equal to L square. So, if you apply this then you get that you get that you get this

following inequality, ok. Now, we want to take summation over t is equal to 1 to T. So,

what will happen? So, on the left hand side you see that in the in the previous so, so in

the. So, if we take summation over all t we will we will be left with only the first or only

the first and the last residuals because r t will appear in two terms r T minus 1 will appear

2 in 2 terms and so on and so forth and each of them will get cancelled, ok.



In this case you will just have a summation over this eta t squared, and similarly in this

case you will also have a summation over t is equal to 0 to T minus 1 this term to is

outside because 2 is not dependent on t.

(Refer Slide Time: 31:22)

Now, one more time we use the convexity of s sorry. So, one more time we use the

convexity of s. You see in the previous in the here there is a summation over t is equal to

0 to T minus 1, ok. What we want is we want this summation to go inside because this

theta  t  is  the  only  thing  that  is  dependent  on  t  or  rather  yeah.  So,  so  we want  this

summation to go inside, ok. So, how does this summation go inside? So, so, we do two

things first you note that summation over t is equal to 0 to T minus 1 eta t expected value

of theta bar s theta bar is less than summation over expected value over theta bar t is

equal to 0 to T minus 1 eta t s theta t, ok.

So, this comes because of inequality which is sometimes also called Jensen’s inequality

which says roughly that if you take a convex combination of a convex combination of

some numbers, and then the expectation of that. So, expectation is a linear operator. So,

if you take convex combination of some numbers, or rather if you take a function of

convex  combination  of  some  num  some  functions,  and  if  you  take  the  convex

combination of the function of numbers,  ok.  The convex combination  of function of

numbers is always going to be lower than the function of convex combination in other

words.



If you have f or let me put it this way that if you have something like alpha times f a plus

1 minus alpha times f b is always going to be less than your alpha. So, in so, basically

this is going to be just one times f a plus f b by 2 sorry. So, this is not correct. So, so just

so, the convex combination of a function is always less than the rather the yeah, convex

combination of a function is always less than the function of the convex combination.

So, with this we are able.

So, so substituting this  in the expression in the previous slide and then we have the

following inequality. So, if you just rearrange. So, what you have to show is that your s

star minus expectation of theta star s theta star is always rather this is always going to be

greater than or equal to; so, this minus this is actually what we want to look, but this is

always going to be greater than or equal to your L square summation t is equal to 1 to

capital T eta t square rather minus of this plus this expectation of theta. So, so this is

nothing, but. So, we are calling this number as just s. So, you have here the s squared and

by summation of eta t and 2 times, ok.

So, so this proves the result that we had seen in the previous lecture. So, I just let me just

go back and. So, this proves this particular result that we had discussed, ok.

(Refer Slide Time: 38:17)

So, so, I will just give you a glimpse of how the convergence of SGD looks like. So, here

on the x-axis we are plotting the iterations or updates of the objective function value or

the count of the iteration and update. So, as your algorithm is running. So, in other words



we are plotting here the index t. So, this is the t axis and this is your s of theta t, ok. So,

you can see that it  is not always minimizing, but if you take the expectation of your

expectation of s theta t something like this, ok. So, on an average this is going down, ok.

So, in the average sense or in the expectation sense iterates are growing down.

So, if you do many of these iterations and take an average then you will see a trend

something like this, yeah. So, you will see at you will see a trend something like this. So,

we will look at some of the practical aspects of how to make a SGD work in practical

scenario in the next class, but hopefully in this lecture; we have given you an intuition

and also a formal proof as to why for a stochastic optimization problem the stochastic

gradient descent algorithm works.

Thank you.


