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Hello everyone welcome to the NPTEL course on Scalable Data Science, I am Professor

Sourangshu Bhattacharya  from Computer  Science  and Engineering  at  IIT Kharagpur.

This is lecture number 20 and today we are going to introduce the Distributed Machine

Learning so, yeah.

(Refer Slide Time: 00:39)

So, in the previous lectures we have already covered the big data platforms that is Spark

and we have covered various computations using the big data platform.



(Refer Slide Time: 00:51)

So, in this lecture first we will cover the motivation of why distributed machine learning

is important ok. So, we will cover twos in two cases: one is large scale machine learning

and other is edge computing which is autonomous vehicles. But, there are many many

examples, but these two are representative of two different types of examples. Then we

will discuss an over view of the types of architectures that we can have for distributed

machine learning.

And then we will also cover in brief at a very high level the platform tensor flow which

is which can also per perform distributed machine learning. And, we will see how it is

different from the Spark platform and then we will see some comparisons between the

between these platforms ok;. Soso, large scale machine learning.
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So, as we know big businesses collect lots of data. So, these big businesses could be in

many many domains we shall see some of the domains. So, these could be in internet

domain, these could be in finance domain, these could be in E-commerce domain, social

networks  all  these domains  ok.  And so,  this  thesethese data  can be analyzed.  So,  to

provide first  of all  insights which is called the analytics  then you can so, insights is

basically  just  some trends or some monitoring kind of thing.  So, this  is  the simplest

outcome that you can get by analyzing this big data.

Second is  patterns  which is  called  data  mining.  So, you may find some correlations

between some quantities which are not trivial to understand. Then third is you can so, so

example  of  pattern  could  be  something  like  you may see  that  there  is  a  correlation

between a certain product that your company is selling and the other product that your

company  is  selling.  So,  the  two  may  be  either  positively  correlated  or  negatively

correlated and then you can find predictions, you can do predictions with the lot of data

that you have collected. So, this is normally called supervised learning.

So, if there are many many examples like you can try to predict stock prices, you can try

to predict the click through rate of a user so on and so forth. And finally, you may want

to find things like anomalies or clusters or surprises in the data which are also come in

the realm of supervised learning;. Something something like clustering all these kinds of

anomaly detection etcetera.  Now, all these companies they have this requirement that



these are. So, these are business critical applications and hence all this kind of processing

should be fast.

So, it should be over within a limited amount of time, let us say may be 1 hour or 1 day

whatever it is, but it should be fast. So, speed is important and it should be reliable. So, it

the computation should have happen reliably, it  should not fail or something and the

processing should be flexible. So, so you should be able to change. So, depending on the

changing scenario of the business you should be able to change the computation little bit

without having to incur very large overhead.

(Refer Slide Time: 05:27)

 ok. So, some examples;. Soso, for example, financial services industry you could show

correlation  between the services  purchased and the  investment  made.  So, how much

investment  they  are  making  versus  what  all  services  they  are  purchasing  from  the

company or you could identify the customer segment whether the customer is wealthy or

not  wealthy. You could  recommend  research  article  to  people  who are  doing online

trading. For example, you could recommend articles which will be useful for them in

making decisions on online trading.

Then in the E-commerce domain you can do recommendation like you can show people,

events  or  things  that  they  like  or  you  may  try  to  predict  the  click  through  rate  or

conversion rate. So, you may try to predict something like if you show a particular ad

what  is  the  chance  of  this  person  taking  on  that  ad  and  then  you may  want  to  do



recommendation for cold start;. Soso, people on which you do not have past data ok.

Similarly, in the gaming industry there are lot of problem.

So, for example,  you could try and cluster  user profiles,  you could find correlations

between attributes of a game and behavior and you could try to predict churns. So, you

could try to see whether a particular online gamer is leaving this particular game and

going to some other game or not, similarly in health care. So, these are so, as you can see

there are lots and lots of industries with large amounts of data. So, this data is collected

from the user and basically doing machine learning large scale machine learning is a very

important business for all of these companies ok.

(Refer Slide Time: 07:41)

So, so what are the things that you have basically.basically? So, so you have the big data.

So, for example, the search engine has 10 to the power 10 pages or social networks of 10

to the power 9 nodes and 10 to the power 12 edges and then you have to do machine

learning. So, you may have to do image classification on millions of labelled images.

So, this is the image made data set for example, or you can do speech recognition on

again thousands of hours of annotated voice data. Or you can do machine translation tens

of millions of bilingual sentence pairs and or something like you could try to teach an

algorithm how to play go for example. And, for that again you have lots of expert moves

already available ok.
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So, this is the first characteristics the second characteristic could be that you could have

big models ok. So, so for example, the Light LDA model which was published it had it is

a basically LDA model. It will be a directly allocation model with 10 to the power 6

topics and 10 to the power 11 parameters. So, and what basically it is seen that the more

topics you add the better  performance you get in a downstream applications.  So,  for

example,  add  selection  or  click  prediction.  So,  so,  and  similarly  for  example,  the

DistBelief paper from Google they had 10 to the power 10 weights.

So, they were training deep neural network for in its classification and this is the order of

parameters that you learn from the data. So, you have a big data and you also have big

models that you want to train from data. And, the point here is that models are only going

to grow bigger because, still we are not matching. So, so the human brain has something

like 10 to the power 11 neuron 10 to the power 15 connections. So, we are not still not

matching the size of the human brain. So, that number of parameters that the human

brain might have.
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 And,  to  handle  of  course,  all  this  big  data  and  big  models  we  need  big  compute

facilities. So, we have now cloud computing, we have large number of servers. On the

other  hand,  we  have  highly  parallel  computers  like  GPUs  which  can  execute

simultaneously instructions on  a  thousands of data points at in 1 clock speed and then

you can  have clusters  of  GPUs.  So,  these  are  very  popular  now in compute  hungry

systems like deep learning etcetera. And, then there are other kinds of things like FPGA

Farms, your Raspberry Pi kind of devices.

All  of  these  could  help  you  speedup  and  parallel  rather  speedup  computation  in  a

distributed or parallel manner very very fast. So, so this is one reason why you need

distributed  machine learning.  Or so,  in  order to train for all  the scenarios that  I  just

describe you need to have distributed algorithms for machine learning ok. Now, I am

going to describe another somewhat orthogonal scenario. So, in the previous scenario,

that the data was coming to big company and then, these companies are processing them

in. a.

So, so because so the distributed computing is required mainly because of the large scale

of data ok.;  SoSo, the other paradigm of computing which is called edge computing’s.

So, in edge computing the idea is that our devices are becoming more and more smart.

So, now your cell phone has as much processing power as your laptops would have even

5 years back ok. And, if you look at if you look at other devices like refrigerators, TV’s,



cars etcetera all these devices are having you know a large amount of compute facility on

board them.

So, the idea is that can we put some part of the computation and all these devices are

collecting  data  and  many  of  these  devices  are  actually  running  machine  learning

algorithm. So, for example, your cell phone is running as speech algorithm, it is it  is

probably running many other machine learning algorithms. So,  so  the point is that can

we have machine learning architecture which is truly distributed rather than centralized;

so, that much of the computation can happen on edge devices.

(Refer Slide Time: 13:39)

. So, I will go in to this use case of intelligent transportation. So, basically what happens

now is that you have lots of devices. So, we are in the era of internet of things. So, we

have lots of connected devices and intelligent devices and these devices are collecting

data and they also have processing power. So, for example, your car has a computer in

between  so,  and it  also  has  camera,  it  has  LIDAR,  it  has  probably  some proximity

sensors, it has a GPS receiver and all these things. So, that you know it can sense your

position, it can see whatever the things that are around you, it can create a map of the

terrain around you and so on and so forth.

So, all these things can be useful in for example, learning a system which will make the

car drive by itself. So, this is the idea for autonomous vehicles that all these sensors they

collect  data  and then  we analyze  this  data  and then  we use  some machine  learning



techniques  to  try  an predict.  For  example,  what  should be  the  steering  angle?  What

should be the throttle? Should you break etcetera etcetera ok. So, this is one application

another application could be monitoring a surveillance applications. So, now a days as

you know there are CCTV cameras everywhere.

So,  for  example,  in  shopping  malls,  in  public  places,  in  roads  etcetera  ok.  And for

example, one application could be that can be monitor or can we do traffic forecasts ok.

So,  can  we  say  using  cameras  mounted  near  different  junctions  almost  all  road

intersections, now have cameras.cameras? So, so using those cameras can we predict or

can we monitor the amount of traffic that is flowing through and then may be we can

forecast  the traffic  and we can do road traffic  recommendation  ok. So,  these are  all

machine learning the thesethese systems you use machine learning algorithms.

(Refer Slide Time: 16:18)

So, the so, as I have already told that autonomous cars contain all these kind of data. So,

so as you can see the Google’s self driving car gathers around 750 mega bits per second

ok. So, this is this is lot of data that the car is collecting.
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So, the current model of training is that the car collects this data and it is in a offline

mode ok. So, so basically what happens is in the training phase the car is asked to collect

a  lot  of  data.  So,  it  collects  the data  from  this  sensorsthese sensors and then it  also

collects the human drivers feedback. So, how much is the human driver breaking? How

much, what is this steering angle? Is it going left or right? And, all these things all these

data it collects and then that data is sent to a to a system where we train the machine

learning models and then the machine learning models are deployed to the car ok.

(Refer Slide Time: 17:52)



But as you can understand the so, all these vehicles are connected to the cloud ok. So, or

at least in the future it is expected that the vehicles will be connected to the cloud ok.

And, the question is can we transfer this kind of data in real time or at least one should

not have to segregate out the training and the testing phase for autonomous vehicles. So,

as you drive your car so, the autonomous vehicle should be able to learn how to drive the

car or so, so that is the idea ok. And so, this is the form of distributed machine learning

as you can understand because, there are many autonomous systems running each one

running on one of the cars..

And, then each one of this system they send the data to a may be a cloud in a real time

manner. And, then the on the cloud the models get retrained or readjusted. And, maybe

there is a slight variation in the way you prefer your car to be driven than somebody else

then may be that or maybe there is a difference between how the traffic is in a in city 1

versus city 2. And, may bemaybe you want to drive the cars somewhat differently in two

different cities. So, this updated model may be deployed in the vehicle accordingly ok.

So, this is another form of distributed machine learning that we will see more and more

often in the future ok.

(Refer Slide Time: 19:48)
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So, so this  I  have already described. So, this  is  some computation.  So, basically  the

computation  shows  that  we need  large  amounts  of  compression  of  the  current  data.

Because, the rate at which the data is currently connected it goes to about 390 megabytes

per  second  ok. Whereaswhereas,  we  should  probably  reinforce  something  like  10

megabytes per second of transfer, not more than that even that is actually high. So, then

the question is can we do this compression using machine learning tools.

So,  then  the  machine  learning  algorithm  actually  decides  which  machine  learning

algorithm which is running on the car actually decides which parts of the data to send to

the cloud and which parts of the data not to send ok. So, so of course, there are many

other scenarios where you need distributed machine learning. So, I have just described

two scenarios which are very important in today’s world. So, given this scenarios what

are the architectures that we can use to do distributed machine learning.
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So, the first architecture which is the now the most commonly used architecture which is

the one also we will be describing most in this course is the data centric architecture. So,

the data centric architecture is mainly for the used case of training over large data;. Soso,

training a machine learning model over large data. So, basically the idea here is that you

use split the data over multiple machines and the model parameters that you have are

replicated over all the machines. And, then you you compute the updates to the model on

each machine based on the local data that you have on that machine.

And, then you update the parameters on this machine and then you communicate the

updated model or updated parameters with the other machines. So, you synchronize with

the  other  machines  either  via  central  machine  or  via  each  other  periodically.  So,

periodically you sort of synchronize this data with each other. Then the second approach

which is still kind of it is being researched on and in certain cases it is very important is

called the model centric approach. So, this is the situation where the model that you are

trying to train is very large model. So, so what happens is that data is accessible to all the

machines. So, whatever machines that you have you want to distribute the training of

model over.

So, the data is accessible all the data is accessible from all the machines. but the model

parameters are now split over different machines ok. And, the idea is that single machine

updates model only a subset of model parameters on itself. And basically so, the single



update  spans  over  multiple  machines  and  in  this  case  basically  periodically  you

synchronize the parameters which are not updated in this machine from other machines.

So,  this  is  the  second  few  of  distributed  machine  learning  second  way  of  doing

distributed machine learning. The third way is that your data itself comes in a graph. So,

basically the, you train the model over large graphs so, your data itself comes in a graph.

So,  for  example,  it  could  be  the  web  graph  or  it  could  be  a  large  protein-protein

interaction network in bioinformatics.

And then basically the so, the data is partitioned according to the nodes of the graph ok.

And the computations happen on the nodes of the graph and basically the operations on a

vertex use the transforming data in the scope of that vertex. So, only the vertices which

are  connected  to  this  particular  vertex  are  able  to  update  the  or  rather  effect  the

computation that happens in this particular graph. So, one example could be page rank

computation or there could be many other examples like a statistical relational learning

etcetera. Also, where the graphs are important or the input there are large input graphs

which are important for the underlined machine learning model.

(Refer Slide Time: 25:44)

So, typically the data centric training, one would you use either Map Reduce or Spark.

For  model  centric  training  typically  one  would  you  something  like  Disbelief  or

Parameter  Server  or  Petuum.  So,  these  are  basically  all  these  are  some  kinds  of



parameter server and yeah. And for graph centric computation one might use something

like Pregel or GraphLab which are basically graph based computation framework.

(Refer Slide Time: 26:26)

So, this is the difference between data parallelism and model parallelism that we have

already discussed. So, here you can see that in data parallelism the data is partitioned and

in model parallelism actually the model parameters are partitioned. Andand, accordingly

your update strategy and synchronization strategy changes ok.

(Refer Slide Time: 26:55)



So, up till now we have so, so we have discussed the parameter for big data computation

or rather scalable data mining, which is Spark which is as you can think that it is a data

parallel  or  it  is  more  suited  towards  data  parallel  computation.  I  will  describe  now

another framework which is somewhat similar to Spark, but in its design, but it is very

very  it  is  much  more  suitable  or  much  more  widely  used  in  machine  learning  and

especially in deep learning ok. So, this framework is called tensor flows.

So, the basic idea here is that you have tensors which are n-dimensional arrays and then

the process of learning or the algorithm of learning is about flow of tensors from one

route to another in a graph. So, if you recall you also had computation graph in Spark

where each node was RDD and data would flow from one node to another as you as the

computation progress. So, here also the understanding is same except that the data that

flows from one node to another is tensor ok.

(Refer Slide Time: 28:42)

So, so just to give you an example of how this works;. sSo, you basically have in a neural

network since situation like this where you have set of input layers here. And so, you

have a set of input layers which are multiplied by this parameter w and then you get the

output layer. And given many many examples you want to compute this output layer w.

So, the way this is so, this is how you would mathematically represent the network.

So, you will have you can compute a 1 a 2 and a 1 b 1 and c 1 from so, these are the

intermediate  computation  at  this  node,  at  this  node.  So,  these  are  the  intermediate



computation at this node and this is the input and when you multiply by w you get this

and then you apply this relu function to get the actual output ok. Now, this you can do in

tensor flow like this, that you can define the input as x, this parameter as w and then you

can compute y which is tf dot matmul x comma w. And, then you can compute this out

which is the output.

(Refer Slide Time: 30:21)

Now, so first thing is that how you define tensors. So, you define you can define two

types of tensors, the first is first type is called variable. So, thisthese variables are tensors

which store the state of the current execution ok. So, for example, in this case the w is a

variable  because,  it  is  the  parameter  which  will  change  as  your  training  algorithm

progresses. So, it will in some sense store the state of your computation as your learning

algorithm progresses ok.
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So, if you write the code something like this which is basically encoding the computation

that we just said then you noticenotices that it is defining this kind of a graph ok. So, the

node of  this graphsthese graphs is unlike in case of Spark in this case the nodes are

actually the operations ok. So, there are the input variable nodes and the most of the

nodes in this graph are computation. So, this is the computation MatMul and this is the

computation ReLu ok.

And, to this node and the data that flows from one node to another is a tensor. So, in

from this node to this node basically the tensor x will flow and this node to this node the

tensor which is stored in this variable will flow. And, then some computation will be

done and the resultant will flow to this node and so on and so forth ok.
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So, so after you define the graph you have to learn the graph. So, you basically define a

session. So, one way to think about the session is that this session is actually a graph,

graph is the computation itself plus the data that you provide to the graph and then you

start the session. So, so this is the so you define session and then you can run a graph in

tensor flow using a session ok.

(Refer Slide Time: 33:17)

Now, now what you have to do is you have to provide the data ok. So, how you provide

this data x ok?



(Refer Slide Time: 33:36)

So, first even before the data x so, you have this variable w. So, if you recall this was the

variable w that we defined ok, right now the w is just an empty node. So, there is no data

here. So, first you have to give that data. So, that is done by initializing the variable. So,

you can for example, in this case randomly initialize the variable w ok. So, that is how

you provide data to w.

(Refer Slide Time: 34:12)

The second thing that you need to provide is you provide you need to provide data to x.

Now, this x is different from w because, it is not storing the state of the computation



rather it is fixed, it is the piece of data that you are providing from outside ok. So, this

kind of data is provided using what are called place holders ok. So, so and this is how so,

you define first x as the place holder.
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And then you can feed the values for the fed of place holder as you run the session. So,

this is the statement for a feeding the value of the place holder x as you run the session

and this is how the whole computation is done and as yeah.
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So, as we shall see or rather we will not go in to detail of exactly how a training is done.

So,  tensor  flow  provides  also  many  other  things  like  it  provides  optimizers  and  it

provides gradient computation etcetera;. Soso, that you can very easily train this kind of

model ok. So, we just refer to a comparison of how these systems perform. So, this is

three systems, first one is Spark. So, the comparison is between three systems Spark,

TensorFlow and MXNet. MXNet is an also open source deep learning system which is

especially designed for distributed computation.

(Refer Slide Time: 36:12)

So,  this  result  is  over  training  of  a  single layered  neural  network using the  MNIST

dataset. So, this is the standard dataset in machine learning and you can see so, what we

are showing here is the CPU utilization. So, the first group so, this group corresponds to

Spark.  So,  these  are  three  types  of  networks  with  Spark.  This  group corresponds  to

TensorFlow and this group corresponds to MXNet. And, what you can see is roughly the

CPU utilization  is  slightly  lower for TensorFlow and MXNet and slightly higher  for

Spark. This is because, this part is implemented in Java and that has its own overhead

whereas, both TensorFlow and MXNet are implemented in C plus.



(Refer Slide Time: 37:17)

Same pattern follows when we try to plot the memory utilization. So, Spark users much

more memory followed by TensorFlow and MXNet uses much less memory.
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But you see now, when we look at the scalar so, on x axis for each of these tensor Spark,

TensorFlow and MXNet. now Now we are showing the number of so, so the scalar as the

number of workers. So, the first bar is for 3 workers, the second bar is for as the first one

is for 1 worker, the second bar is for 3 workers and the last one is for 5 workers. On the y

axis what we are showing is how many images or how many training images is this



system able to process per second ok. So, we see obviously, if we give it less number of

workers it will be able to process less number of images; so, that that pattern we always

see.

So, it is always increasing for so, this is this one is for Spark, this one is for TensorFlow

and this one is for MXNet. Now, what we see here is that the scaling of Spark is much

better. So, as the number of workers increases Spark system is able to scale much better

than  the  other  two  systemsystems.  This  is  because  Spark  is  more  designed  most

specifically  designed  for  distributed  computation.  So,  even  though  TensorFlow  and

MXNet can also perform distributed computation and they are in fact, much faster in

case that you do single node computation, but as the number of nodes increases your

Spark becomes somewhat faster in scaling.
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So, this you see also in the network utilization. So, here now we are showing the network

utilization for in the in the y axis for the same set. So, you can see that Spark utilizes

much less network compared to TensorFlow or MXNet ok.
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So, so just to conclude we have seen in two cases where distributed machine learning is

very very important. And, we have seen the three possible architecture in which, you can

design distributed machine learning algorithms. We will see some specific algorithms in

the  in  the  following  lectures  and  we  have  seen  some  platforms  like  Spark  and

TensorFlow and we have seen some comparisons.

So, basically what we have seen is that a Spark computation is a Spark platform is more

designed for distributed computation whereas, TensorFlow is more designed for training

machine learning model in a fast manner. So, these to have their own advantages both

can do both, but they have their distinct advantages. And, also we have seen that the

underlying  philosophy  of  both  Spark  and  machine  learning  is  to  actually  have

computation graphs. They have different convocations on the computation graph, they

have different constraints.

So, for example, in the Spark the computation graph is a directed acyclic graph, but in

TensorFlow that is not the case. So, these are the two main differences between Spark

and TensorFlow. So, in for example, in Spark you have a DAG as a computation graph.

So, you have a Directed Acyclic Graph  whereas,whereas; in case of TensorFlow you

need not your graph can have cycles. And, the second differences isdifference is that in

Spark the RDD’s are immutable whereas, in case of TensorFlow you can see that you can

have  variables.  So,  thisthese variables  are  actually  mutable  quantities.  So,  which



basically  means  that  TensorFlow  cannot  support  something  like  fault  tolerance  and

things like that, but on the other hand it is more suited for machine learning computation.
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So, these are the references, the comparison is taken from this particular paper and some

of the things are taken from Introduction to Tensor flow.


