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Hello everyone, welcome to the 19th lecture on NPTEL course on scalable data science.

I  am Prof.  Sourangshu Bhattacharya from Computer Science and Engineering  in  IIT

Kharagpur. Today, we are going to see the 3rd lecture on spark.

(Refer Slide Time: 00:34)

So, we have already seen we have got an introduction on Scala, and how concepts of

scala can be used in spark. And we have also seen the motivation and RDD, and we have

seen  the  concept  of  actions  and  transformations,  and  we  have  also  seen  some

programming examples in spark.



(Refer Slide Time: 01:00)

So, we continue with our programming examples. So, we give two more programming

examples in spark. And then we go into the concepts of partitioning, and accumulators in

spark. And then we go into details of implementation of spark jobs, and how actually

jobs are run in spark.

(Refer Slide Time: 01:32)

So, the first example we are going to see today is that of collaborative filtering. So, the

problem is the following that you are given a matrix of user’s cross movies. So, you have

a site where users are watching movies. And you, certain users have rated certain movies.



And you want to predict the ratings of other users on these movies. So, basically in the

matrix there are certain entries, which are filled and certain entries are question mark.

And the question is can you fill in the question mark entries.

(Refer Slide Time: 02:21)

So, a popular approach to solving these collaborative filtering problem is using, what is

called a matrix factorization model, which is to say that the you factorize the ratings

matrix R. Here as a product of two matrices. So, if so this is a user cross movie matrix,

so this is user cross movie matrix, so the first matrix is a user cross K matrix, where K is

the latent dimension. And the second matrix B is or B transpose is a K cross movie

matrix. In other words, you are you have to find out some latent features for users.



(Refer Slide Time: 03:27)

And some latent features for movies such that if you multiply this, so if you multiply for

user U the latent feature yeah, so if you take the user U features, and take dot product

with the features of the matrix B mth column of this you get the rating, which is u b u R

m b. So, so this is the this is the setting of the collaborative filtering. 

(Refer Slide Time: 04:00)

So, the algorithm for solving this problem is very simple. It is called the alternating least

squares algorithm. So, we start with random matrices of A and B which is the user matrix

and  the  movie  matrix.  And  then  first  we fix  the  matrix  B.  And  then  find  A which



optimizes the error on scores in R. And the second step is you fix A to the A that you

have obtained in the previous step. And then you optimize for B such that it minimizes

the error on scores of R again. So, you do this repeatedly, first fixing B and then next

fixing A. And every time you update the B matrix and the A matrix or the movie matrix

and the user matrix.

(Refer Slide Time: 05:10)

So, how you will implement this in spark? So first, so the first simple implementation

here I have provided is that you have the ratings matrix, which is a matrix in a local

variable. And then you create this you create this A matrix which is matrix of random

vectors, and also the B matrix, which is a matrix of random vector. So, initialize the A

and the B matrix.

Now, for parallel updating what you do is you first parallelize the set of users. So, you

want to update the vectors for each user. So, you pass the current B and the current R

matrix. And then in the ith machine, so this operation in inside the map is happening on

the ith machines. So, in the ith machine you update for the user i. And then again you

bring it back to the local machine.

And similarly  you do this  for  each  and every  movie.  So,  you again  the  number  of

machines that you have you parallelize the movies in M movies that you have in to each

of these machines. So, numslices here is saying how many machines you have. So, if you

have 10 machines, you split the group of users in to 10 machines. And then again for



each user in that machine in the ith machine you update the movie vector  using the

optimization.

So, each both these update user and update movie functions are local functions, which

are running on each of these machines.  And these are optimizing the vectors for this

particular  user or movie.  Now, the problem with this  implementation  is  that  you are

doing a lot of communication. So, every time you are sending the appropriate values for

this ratings matrix which is not changing.

So, as you can see the A matrix, and the B matrix are changing, but the ratings matrix

remains  fixed  throughout  this  computation.  So,  how can  we  take  advantage  of  this

situation  and  not  send  these  A and  B  matrix  as  a  closure.  So  because  as  we  have

discussed already whenever you try to run a mapper function, which is a closure. The

whole variables all the variables in this closure have to be passed to the corresponding

machine,  where  this  map  function  is  running.  So,  these  are  local  variables  on  the

controlling machine, which have to be passed to the machine in which this map function

is actually getting executed. So, we want to avoid that.

(Refer Slide Time: 09:08)

So, we implement this using what is called a broadcast variable. So, what is a broadcast

variable? Broadcast variable is a variable which you can access just like a local variable,

but these are actually pre distributed on all the nodes of the machine. So, whenever you

say that this you declare this rating matrix, which you have read using let us say read



rating matrix function. As a spark dot broadcast variable, spark as and when required will

send this the values of this matrix R on or rather it will send the whole matrix to all the

servers on which the jobs are running.

And instead of R now, we just have to use R dot value, because dot value actually gives

you the value of this broadcast variable. So, R now is actually the broadcast variable,

whose value field actually contains the matrix, and it is stored in each and every server.

And rest of the code remains as it is. So, then you can see that this, the ratings matrix

does not have to be transmitted to each and every server all the time. 

(Refer Slide Time: 10:47)

So, we take the another example, which is the example of log mining. So, here the idea is

that  you have various users who are,  so you want to search interactively for various

patterns in an error log. So, the first task is basically that you read the lines of the error

log file using the text file command as we have seen already.

The next is that you read the; you read or you filter out the lines, which do not have error

or rather you fill filter the lines which have error. And then you store this errors RDD

after getting the messages into this cached messages. So, we have seen this part of the

coat. Now, suppose you want to get a error message, which has let us say the term foo.

So, you want to get the error message, which has the term foo. So, you call on these

cached messages, the filter command.



And then you call  the count  command,  so because you call  the count  command the

action happens. So, then this RDD is materialized, and you want to count basically the

number of error messages which contains foo. So, what will happen is that all  these

blocks will be created from the cached RDD. So, this all these so this entire code will

now be executed, up till now up till this no code has been executed. So, up till this line,

no code has been executed. Now, it will or rather code has been executed that no RDD

has been materialized.  So, no materialization has been done.  Now, one RDD will be

materialized. And hence, this RDD blocks will be created on this worker node. So, this is

block 1, block 2, block 3. So, all this RDD blocks will be created.

Now, next time and then the results will be brought back to the driver, which is the total

count in this case. Now, because we had called this cache function here so, it will not

only create this blocks, but it will also create this cache for this cached messages. So, for

this cached messages RDD, it will create this cached on each of these worker machines.

Now, suppose you want to execute this same command, but this time you want to search

for the string bar instead of the string foo. So, earlier  for the same set of you know

filtered messages, you were searching for foo, now you are searching for bar. Now, what

will happen is again the tasks will go to different servers, but this time instead of hitting

the blocks or the actual lines here, it will actually hit the cached.

So, all this portion of code will  now not be executed.  Instead,  it  will directly hit the

cached messages RDD. And it will filter those with bar, and then it will compute the

count  and  come  back  with  the  result.  So,  this  is  the  advantage  of  the  caching

mechanisms. So, it says for all these read operations and write operation. So, in case of

interactive  or  iterative  computation,  this  cache  command  helps  reduce  the  cost  of

execution or time of execution by this mechanism. So, for example, a full-text search on

Wikipedia will take less than 1 second if you do cache and if you do it without caching it

will take 20 seconds.
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And similarly for other things.

(Refer Slide Time: 15:57)

So, with this we stop our programming examples. So, we have given many programming

examples and scenarios, where you can write machine learning programs using spark,

very complex machine learning programs. And you can also feed them up somewhat.

Now, we actually go into how this programs are executed. So, we recall that, we had said

that whenever a spark a program is written and executed, until an action is called the

only the lineage graph is created.



So, this is an example of a lineage graph, but in addition so A, B, C, D, E, F are the

RDDs in this lineage graph. So, in the lineage graph all the nodes are RDDs, and the

arrows  are  showing  the  dependencies.  But,  we  have  now  gone  deep  into  how  the

dependencies look like in terms of partitions. So, not only do the RDDs so each of the

RDDs will  have a certain number of partitions.  So, each RDD is actually  present in

multiple machines. So, let us say this RDD A is present in three machines and so on and

so forth.

So, now these partitions can either so for example, the RDD B which is created by a

transformation from RDD A, can either have this kind of all to all dependency that is all

partitions of B depend on all partitions of A or it can have this kind of a one to one

dependency. So, there are basically two types of transformation.  So, edges on in this

graph  are  of  course  marked  by  transformation  as  you  can  see.  So,  one  set  of

transformations  like  map,  filter,  etcetera  union,  etcetera.  These  side  type  of

transformations produce this one to one dependency or also called lean dependency. 

And other  transformations  like  groupBy, groupby key, reduced by key, join  etcetera.

They produce many to one transformations or many to one dependencies, depending on

again what happens. So, now the way the spark scheduler works is that it pipelines the

one to one dependencies. So, all the one to one dependencies are executed together in

one machine.

So, even though there are two transformations here, this whole thing is compressed into

one stage. Whereas, the many to one dependencies or the fag dependencies cause create

the stage boundaries. So, basically this whole graph will be executed in three stages.

Stage 1, where this RDD will be computed. Stage 2, where this RDD will be computed.

And then stage 3, where this RDD will be computed, where the input is basically the

RDD from the stage 1 and the RDD from the stage 2. So, this is how the spark scheduler,

schedules the jobs or schedule the task. So, each computation here will be done using

one task.
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So, we will skip this user log mining.

(Refer Slide Time: 20:10)

So, now we will look at the task of another task of user log mining and we will see an

important concept called the partition in concept. So, the task here is that you are given

two types of data. One is the UserData, which stores the user ID and the UserInfo. So,

think about it that users are visiting links in a particular  on the internet and you are

collecting that data.



So, now what you want to report is how which users are visiting off topic links. So, for

each  user,  you  have  certain  number  of  topics  in  which  the  user  is  interested.  And

similarly for each link you have a certain number of topics, which this link pertains to.

So, you want to find out, which user is visiting and off topic or the number of user who

are visiting an off topic link. So, what you do is you get the events RDD, where the fields

are UserID and the LinkInfo.

And then you have the joint RDD, which basically joins the on the user ID. So, you

know which user has visited which link in one table. And now what you want is you

want to filter userInfo dot topics dot contain. So, that topics in UserInfo is giving the

topics at the user is interested in. And similarly the topic in link in phase giving the

topics the link pertains to. And if this is true, then you just want to filter out those topics

or as a you do not want to use those topics.

So, basically  you just  want to filter  out the cases,  where actually  this  should be not

contains. So, you want to see where user topics are not contained in linked topics. So,

and then you want to call count to see off topic visits, see the number of off topic visits

for each user. Now, if you see your RDD will look something like this, so here on one

hand you have the userData, on the other side you have events data. And you are having

this communications of for creating this joined RDD which is there. Now, you see that

this is unfortunately a lot of communication.

(Refer Slide Time: 23:37)



Instead, what you can do is you can use what is called a partitioner. 

(Refer Slide Time: 23:42)

Basically, what you need is this kind of a graph. So, you know that your key for the

joined RDD. So, for all these three RDD your key is User ID. So, what you can do is you

can have the joined RDDs such that the keys of this partitions are collocated with the

keys of this partition. So, this will have exactly the number of partition as the user data.

So, the data for the same user will be stored in the same machines as the userData RDD

was stored. So, then only the events data for this particular user, for let us say you are

storing from user 1 to user 10 in this particular.

So, then for all these event partitions only user 1 to user 10 data needs to be transferred

to this. So, this shapes a lot of bandwidth. So, this is done using the construct called

partitioner. So, what you can do is while  reading the userData,  you can provide this

partition by because, and then you can persist it. So, when you do this partition by thing

it basically creates a partitioned RDD. So, when you join a partitioned RDD with another

RDD, then the data flow happens from the events RDD to the partitioned RDD. So, this

produces a more efficient communication.
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So, there are many operations or rather transformations, which benefit from partitioning

such  a  join,  cogroup  etcetera.  And  many  of  this  operations  effect  partitioning.  So,

basically  these  operations  create  partitioned  RDDs,  if  the  input  RDD  is  already

partitioned.

(Refer Slide Time: 26:09)

And then you can see that your page rank algorithm can also be speeded up using this

partitioning, because what you can do is you can create the links RDD as a partitioned

RDD. And in that case every time you join the links RDDs with the ranks RDD, only the



ranks get copied to the links instead of every time moving both links and ranks to a third

machine. 

(Refer Slide Time: 26:55)

So, another important topic and is what is called accumulators. So, up till now what we

have seen that the machines can be thought of as the master machine. So, the machines

that are used in spark can be thought of as the master machine, and the task or client

machines.  So,  this  is  where all  the tasks are  running. Now, we know that  so all  the

communication happen. So, all the communications for spark happen between the task

machines.

So, for communicating a master variable to the task machines, we use what are called

closures. So, if you define a local variable on the master and use it in a function in the

mapper or the task, then this variable can be accessed in the task. But, how can you use

some variable which is defined in the task machine on to the function machine. So, this

cannot always be done, but it can be done in certain restricted ways.

So,  in  order  to  do  this  you  have  to  use  the  accumulator  variable.  So,  what  is  the

accumulated variable? So for example,  in this case you can define for a given spark

context and accumulator variable. Now, say you are, you have this RDD which takes this

file RDD and calls a flat map. And basically, it counts the number of blank lines. And

then you can say so if there is a blank, so it is so you have this file for which you are



processing the lines. And if you have line which is blank, you just increment this blank

line.

So,  note  that  this  line  RDD  is  distributed  on  to  the  task  machines.  But,  when  the

increment happens, this blank line is actually a accumulated variable, which is defined

on the master machines. So, the blank lines gets incremented. So, at the end of it, you

can use the blank lines dot value to get the total number of blank lines from all these

machines. 

(Refer Slide Time: 29:58)

So, finally we get into how the execution plan is made. So, user code defines so we have

already seen that user code defines a DAG for the RDDs and so operations on the RDDs

create new RDDs that refer back to their parents, thereby creating a graph. So, actions

force translation of the DAG in to an execution plan. So, basically whenever you call an

action on an RDD, it space so the RDD itself and its parents must be computed.

The job has to be divided into stages, as we have already explained. And each stage has

to be computed and the basically the RDD can have  one or more the computation of

RDD may involve more one or more than one stages. And tasks are basically scheduled

and executed on the cluster. So, stages are processed in a certain order, and individual

tasks for computing this stages are computed, are launched on each of the machines until

the whole job or the action is complete. 
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So, each task internally performs the following steps. So, it fetches the input from either

the data storage. If the RDD is an input RDD, like using either a text file or parallelized

command or an existing RDD. And then it performs the operations necessary to compute

the a particular partition of that RDD. Typically tasks are used for computing partitions

of an RDD. So, for instance executing a filter or map operations on the input data or

performing a group operation using a shuffle if necessary.

And then write the output of a shuffle, to an external storage. So, external storage can

either be memory or a local file system as we have seen in case of map reduce. And then

this RDD is materialized. And we go forward from there to computing other RDDs as

defined in the execution plan, which has already been designed. So, this is how the spark

internals work.
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So, in conclusion we have seen in this lecture, which has three parts; the spark the scala

programming  language,  the spark programming platform.  And we have seen how to

implement some machine learning algorithm using spark. And then we have seen also

seen, how the spark scheduler internally operates. And how we can and how basically we

can speed up the various spark program using constructs such as portioning and also

constructs such as cache and also how we can use accumulators and closures.
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So, the reference is for this are learning spark, which is the book by Holden Karau, Andy

Konwinski, Patrick Wendell, and Matei Zaharia. So, Matei Zaharia is also the inventor of

spark or any other book on spark, there are many books on spark available and also on

scala.

Thank you.


