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Hello everyone. Welcome to the 19th lecture of NPTEL course on Scalable Data Science.

I  am  Prof.  Sourangshu  Bhattacharya  from  Computer  Science  Department  in  IIT,

Kharagpur. This is the 2nd lecture on spark.

(Refer Slide Time: 00:30)

So, in the last lecture, we have seen such as Scala and we have seen its immutable verses

mutable variables, which are Vars and Val. And then we have seen functions which are

objects, and also higher order functions and we have seen lists.



(Refer Slide Time: 00:53)

In this lecture, we are going to see spark. So, we will see the motivation, which we have

already seen. We will briefly go through the motivation once again for the spark. Then

we will see what are RDDs or Resilient Distributed Datasets. And then we shall we shall

see some see what are actions and transformations. And then finally, we will see some

programming examples using spark.

(Refer Slide Time: 01:24)

So, as already mentioned spark is a distributed in-memory cluster computing platform

for iterative and interactive applications.



(Refer Slide Time: 01:35)

And we have discussed about the origins and properties of spark.

(Refer Slide Time: 01:42)

And we have seen the background also.



(Refer Slide Time: 01:46)

(Refer Slide Time: 01:59)

And  we  have  also  seen  that  what,  so  what  is  the  benefit  of  this  map  reduced

programming model which is to say that the runtime can decide where to run the tasks

and also it can automatically recover from the failures ok.



(Refer Slide Time: 02:18)

And we have also seen that for an iterative computations and interactive computations.

This kind of this kind of the programming model is inefficient, and also sometimes more

difficult to run programs in ok. So, so spark, so one of the main properties of spark is that

it  makes  this  working  sets  a  first  class  concept  to  efficiently  support  this  kind  of

computations ok.

(Refer Slide Time: 02:54)

So, the goal here is to provide distributed memory abstractions for clusters to support

apps with working sets  ok.  So, working sets  are basically  the distributed datasets  on



which you do various computations ok. At the same time what you want to do is you

want to retain these attractive properties of fault tolerance, data locality, and scalability

ok. So, you and also additionally you want to also retain the property of ease of use ok.

So you do not want to write program for you know distributing, you should be able to

automatically schedule the tasks as they come. And so, the solution is to augment the

data flow model with resilient distributed datasets. So, so what are resilient distributed

datasets.

(Refer Slide Time: 04:13)

So, resilient distributed datasets are immutable distributed SCALA collections. So, what

are SCALA collections, SCALA collections are something like arrays, lists, maps, sets,

etcetera. So, these are basically collection of objects either sequential collection like in

arrays or lists or sometimes non-sequential collections like sets or maps, where there is

no particular order, but the elements are together or a collection of elements are together

help in this data structures. And importantly these data structures are immutable that is

once you initialize them, you cannot change their values ok. So, from the programmer’s

point of view, this is what a resilient distributed datasets is ok.

Now, moreover the programmer can do two types of operations on resilient distributed

datasets ok. So, these resilient distributed datasets are created and managed through these

kind of bulk operations such as map operation, which we have already seen which is to

perform a particular function on a particular a particular on all the elements of a resilient



distributed  datasets.  An operation can be something like reduce by key, which is  an

associative operation on set of on a set of elements in an RDD ok. So, we will see how to

use reduce by key in sometime time.

Then one can have operations like filter, which basically again operates on every element

of an RDD or every record of an RDD. And we can have operations like join, which join

the records in two different RDDs based on the key the keys of those records ok. So, the

thing about  transformations  is  that  all  transformations  when applied on one or more

RDDs create new RDDs ok. So, this is the property of a transformation.

On the other hand, there is another class of actions like reduce,  collect,  etcetera.  So,

reduce action for example, takes in a function which operates on elements of an RDD,

and then finally, produces a single value or a single object. Similarly, collect, produces,

local object or a local list from an RDD. So, if you call collect on an RDD, it will take all

the  elements  of  that  RDD,  and  produce  a  local  SCALA array  or  a  SCALA object.

Similarly, count we will just count the number of records in an RDD and so on and so

forth. The common thing about these actions is that they operate on an RDD, and they

report values or they return values, so they do not create any new RDDs. So, this is a

major difference ok.

So, as you can as you will see these are seamlessly integrated into the SCALA program.

Now, another important thing is that RDDs are conceptual objects. So, these collections

in spark are for the understanding of the programmer, but in reality they may not exist.

So, they are exist or they exist or they are materialized, only when needed ok. So, just

because you define an RDD does not mean that the RDD is computed. And then, so

RDDs can be fairly large ok, so you can have very very large distributed RDDs. So,

RDDs have the capability, so it may not fit into the main memory of the clusters. So, in

that case, there is the facility of RDDs being cached on to disk. So, portions of the RDD

may be return on to disk or even sometimes they can be cached on to memory ok.

Another thing is that since RDDs are these distributed collections. And the basically so

the RDD data is distributed into different splits on different machines. So, fault tolerance

basically means that if a certain portion of an RDD also called a split of an RDD is lost,

let us say because you are doing big data computation and thousands of server, and one



of the server is lost ok. Then the spark framework has the capability to re- compute only

those lost splits without you know computing the other splits ok.

(Refer Slide Time: 10:24)

So,  again  what  is  an  RDD?  So,  an  RDD  is  an  immutable,  partitioned  and  logical

collection of records; we have already discussed what it means to say immutable, which

means that an RDD from the point of from the point of view of logic, cannot be change.

So, once you define an RDD, the RDD remains the same. If you do some operations like

transformations on this RDD, new RDD is created ok.

These  are  partitioned  in  the  sense  that  these  are  split  into  different  portions  or  also

sometimes called partitions or splits. And each split can stay on different machines of a

cluster depending on the requirement. And these are logical collections as we have said,

because they need not always exist. So, even if we actually define an RDD, the actual

data  of that  RDD may not be computed which may be really  large.  Instead,  what is

present is the information to build this RDD from the dataset, which is there in the stable

storage.

So, partitioning can be based on in many ways either on key or using some hash value.

And as you have discussed, typically RDDs are created using bulk transformation, which

are also called transformations on other RDDs; and they can be cached for future reuse

ok.
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So, here is slightly more complete list of transformations, which define new RDDs and

actions, which compute value ok.

(Refer Slide Time: 12:41)

So, now RDDs maintain what is called lineage information to construct lost partitions.

So, even before this, let us see so let us see an RDD program ok. So, suppose you have

you have  file  which  has;  so let  us  say here  you would provide a  file  name ok.  So,

suppose you have a file which has a lot of error messages or something like let us say

web  server  log  or  a  operating  system  log  ok,  so  you  will  have  some  information



messages and you will have some error messages. Now, these files are typically very

large ok.

And suppose, you want to do some processing where you want to extract the messages of

the errors ok; so, the errors which have occurred, you want the messages of that ok. So,

the first command is called the text file command ok. So, the text file command creates

its one of the ways of creating an RDD. So, there are broadly two ways of creating an

RDD; one is the text file using the text file command, which creates an RDD from a DFS

file, so it creates an RDD from a distributed file system file, and the other command is

called the parallelized command ok. So, this creates an RDD from a local array. So, you

can pass it a local array and it will create an RDD ok.

So, in this case, we are creating an RDD from a text file command ok, so the output of

this is an RDD. On that RDD, we are calling the filter operation which so this underscore

here as we have seen means that it  is a function literal,  which takes in the particular

argument, which is there in underscore, and then call the contains function on this with

the  string  error. So,  if  the  string  passed  to  filter  contains  the  string error,  then  it  is

evaluated to positive otherwise negative. And then this filter is a transformation ok. So,

the filter  is  a transformation,  which creates  a new RDD with only those lines which

contain the error file the string error ok.

And then on this filtered RDD, we apply the map function with the split command. So,

the split command so typically your file will have this format that you will have error,

and then tab, and then the actual error message may be some sort of an error message ok.

What you want is you want to extract this error message. So, you split the line in to 2,

and you only take the 2nd field of the error and create a new RDD, which has only the

2nd field.  And finally, the cached command says that the resultant RDD can be very

large. So, you either store it on memory if it is possible, otherwise you store it on to over

disk. So, this creates a new RDD called cached messages ok. So, this the resultant of all

this operation is a new RDD called cached messages ok.

And so, now when you give this command, this RDD cached messages is created, but the

actual cached message data is not created.  Instead, what is created is a lineage graph

something like this. So, this is a lineage graph that is created ok. So, what is the lineage

graph, lineage graph is that you first have an hdfs RDD, which is the output of this text



file. Then you have a filtered RDD, which is output of this filter command. Then you

have a mapped RDD, which is the output of this mapped command. And then finally,

you have a cached RDD.

Moreover, you have these dependencies. So, you have that in order to compute filtered

RDD, you have to compute this hdfs RDD and so on and so forth. So, you have all the

RDDs, and you have all the dependencies among the RDD. So, these faults are graph in

general. In fact, it forms a directed acyclic graph as we shall see ok. So, this directed

acyclic graph is also called a lineage graph.

(Refer Slide Time: 18:49)

Now, how does  a  spark  program work.  So,  we have  already  seen  how the  Hadoop

program  works.  So,  spark  program  works  in  a  similar  context.  You  have  a  driver

program, which is written which is a user program written mostly in SCALA or it can be

also written in it can be also written in python, when you are using something like a

pyspark, but for this class we will use mostly SCALA ok.

And  in  this,  there  is  a  object  called  spark  context  ok.  So,  spark  context  object  is

something  like  the  job  object  in  Hadoop,  where  basically  this  is  the  object,  which

collects to a spark cluster which collects rather to a spark cluster, and then it does all the

distributed operations ok. So, whenever you create an RDD you create an RDD using a

spark context object, so you will have to call something like sc dot text file ok. So, sc is a

spark context object ok. So, all the RDDs are created using this spark context object.



Now, in practice what happens is the spark context object has the code to contact the

cluster  manager,  which  creates  some  executers  nodes,  when  spark  job  needs  to  be

executed that is when a RDD needs to be materialized ok. So, whenever so when you

define an RDD, nothing happens, so the cluster need not be contacted, only the lineage

graph needs to be built, so that is done within the driver program.

But, whenever you RDD needs to be materialized, which is when actions are called an

RDD, we will  come to that.  The basically  the spark context  will  contact  the cluster

manager, and it will create a lot of worker nodes for the for the spark job to be executed

ok. And each of these worker nodes will (Refer Time: 21:30) a certain number of tasks,

which will then execute all the all the tasks which are needed for materializing all the

partitions of the RDD ok. So, in general, this is the structure of a spark program ok.

(Refer Slide Time: 21:50)

Now, let  us  see  how the  spark  program spark  is  so,  for  example,  any map reduced

program can be you know created or rather can be can be mimicked using the spark

platform. So, first of all in map reduce, you specify two functions; so the first is the

mapper, and the second is the reducer. So, in this case, the mapper function is called my

map function, and the reducer function is called my reduce func ok.

So, so in this case basically as you can see, suppose data is an RDD ok, which is storing

the input dataset of a map reduce function.  So, in case of remember in case of map

reduce, your input comes from a hdfs file. But, in case of RDD in case of spark, your



input can come from an RDD. So, let data be that input RDD, and finally you will get the

output RDD, which is the result ok. So, then you can call the flat map function which

basically takes in every record, which is there in rec of the RDD data ok, and it passes

through myMapFunc and creates which creates the output records, output records are of

func key value pair ok.

And then what  you can do is  you can just  so basically  myMapFunc,  remember  can

produce multiple output records, so flat map basically creates an RDD with multi which

is with multiple output records per input records. So, each input record may result in

multiple output records for the RDD ok.

Then you use a group by key function, which is just a shuffle function. So, it basically

takes all records with the same key and groups them together. And then finally, you just

apply the reduce function with the key and the value ok. So, my reduce function takes

the key and the value, and outputs the reducer output record w which is the output of

each of the records ok. And basically this is applied on the mapped data ok. So, this is

one way of reproducing using the map reduce functionality in spark ok. Another way can

be using combiner functions, where instead of group by key, you use the reduceByKey

command,  which  first  groups  by  key  and  then  also  acts  the  combiner  or  puts  the

combiner in the in the first in the in each reducer record ok.

(Refer Slide Time: 25:40)



So, how will one execute word count in spark ok? So, as you can see the first line is

creating RDD called lines using this so, this is the spark context object. So, it is calling

the text file command on the spark context object, and creating the RDD lines. Next, it is

calling flat map on lines, so that it splits the line into words using void space. And then

for each word, it is outputting just the word; after this, it is just doing reduce by key

operation, and it is just adding. So, reduce by key takes in two functions ok.

So,  reduce  by  key  or  rather  reduce  by  key  actually  takes  in  a  function  with  two

arguments. So, this function is actually a function of this type int comma y int and then it

produces the output, let us say Z, which is of type int ok. And in this particular case, your

Z  is  nothing  but  x  plus  y  ok.  So,  this  is  what  it  is  saying that  it  is  taking  in  two

arguments, and basically computing the sum of those two arguments.

Now, when reduce by key function is called to the records of an RDD, what it does is

basically it takes all the records a, b, c, d a, b, c, d like this, and then it takes pairs of

records in random order. So, let us say so it has to be associative the function has to be

associative, so it may first compute a plus b, and then apply the result and c, so it will

apply a plus b and c. And then again it will take a plus b plus c and then apply it to d and

so on and so forth. So, this it may do in arbitrary order, so it can form a reduction graph.

So, it can either compute a plus b plus c and then plus d or it can compute a plus b and c

plus d separately, and then add the two ok. So, this is what any reduce or reduce by key

operation does. And then finally, it is saving it to a hdfs file ok.
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Now, let us take the problem of matrix multiplication ok. So, so the input here is that you

are given a matrix, which is of this form, list of row index, column index and value. So,

for example, if you have a two cross two matrix of 1 0 0 1, then it will be represented as

1 comma 1 comma 1, 1 comma 2 comma 0, 2 comma 1 comma 0 and 2 comma 2 comma

1. So, this will be your RD ok. So, this is how you represent this matrix ok.

Now, let us say there are m cross k and k cross n matrices. So, then there will be two

matrices A and B ok. So, then you take so you know that for each row of A so, if you

have to compute A times B for each row of A, you have to compute for each row you

have to compute one entry for each row of A, and each column of B ok.

So, hence your mapper key for the 1st, so your mapper key for the if you have the 1st

matrix, should be the row index of the 1st matrix ok. And if it is the 2nd matrix, your

mapper key should be the column index of the 2nd matrix. So, it should either be the row

index of the 1st matrix or the column index of the 2nd matrix ok. And your sorry your

mapper key should be the row index of the 2nd matrix, and the column index of the of

the 1st matrix ok, let me let me start again.
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So, your mapper key should be so, you should have an output for all. So, all row index of

the 1st matrix, and all column index of 2nd matrix should come to one place ok. So, this

so these should be your mapper keys ok. And your mapper value should have the either

the column index of the 1st matrix or the row index of the 2nd matrix, and then it should

also contain the value ok.

So, now when in the reducer, you get you get all the row indices and the all the column

indices corresponding to corresponding to the first so corresponding to all the particular

row and  all  the  columns  and  a  particular  column,  so  this  for  the  1st  matrix,  and  a

particular column for the 2nd matrix ok. You can just match the corresponding row or the

column indices, so and then you take the product of the corresponding values, and you

sum them. So, in other words, if you have A i k and you have B k j, you just sum over all

values of k, and this becomes your resultant C i j entry ok. So, so you can compute this

in a distributed manner using this particular algorithm ok.
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The next very important application is the logistic regression application, which is used

for  binary classification.  So,  we have seen this  application.  So, you have the binary

classification problem, where you have the labels as plus 1 and minus 1, and you have

the sigmoid of w transpose sigmoid of y minus y times w transpose x as the probability

of y, and then you have to minimize this particular loss function in a distributed manner

ok.

(Refer Slide Time: 34:27)



And you have the  gradient,  which is  given by this  function;  you can check that  the

gradient of the loss function is given by this function. And your algorithm for computing

w is something like this ok. Now, the question is how will you implement this algorithm?

So, this is the gradient descent update that you want to implement.

(Refer Slide Time: 35:01)

So, this is a simple spark program that tries to implement that algorithm ok. So, first you

have an RDD x, the records of which are data points for the data sets. So, this RDD x has

both x and y in the logistic regression parlance. And then you have a local variable w in

the driver program, which stores the weights of each of this each of these matrices or

weights for the logistic regression ok. So, the first you have to have a gradient function

ok, which computes the gradient of a dataset or a subset of data a, let us say a is equal to

x 1, y 1, till xk, yk ok. So, this gradient function should compute the gradient given this

dataset a ok. And then you can just the reduce function just adds those gradients ok.
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So, why is this working, this is working because if you see here, your gradient is actually

sum over the gradients of all data points ok. So, if i is the index of the gradient of the

data points, and if you sum over the gradient of all data points, you get the total gradient

of the objective function, you have to subtract at a later time the regularizer, but for the

timing, you can also assume lambda to be 0 ok.

(Refer Slide Time: 37:24)

So, if this is the case, you can you can compute the total gradient in a distributed manner

using this line of code that is you compute for each subset of data the gradient with



respect to that subset of data. Of course, for computing the gradient, you need the current

parameter value, which is a local variable. So, it has to be passed to this as a closure. So,

this is a closure that is passed to each and every server in order to compute the gradient

of this particular value, and then you sum the gradient ok. And then s is another function,

which given the gradient direction and the parameter current parameter w, computes the

step length ok. And then in the local machine, you just update the parameter w; so, just to

give you a feeling of how this program would work.

So, if you have many machines, and you have a very large dataset, so let us say you have

1 billion data points each having 1 million features ok, so then you would have a central

machine, where you would have the parameter w, which is of size 1 million. And now

you have a data matrix which is X, which is stored as an RDD which is of size 1 billion

cross 1 million, because it has one billion data points each of which is of size 1 million.

So, then each of these each of these machines,  so this is distributed in each of these

machines. So, this may have 20 million of the data, this may have another 20 million of

the data and so on and so forth, and it may be distributed on to five machines.

Now, the gradient computation happens parallely in each of these machines, and then the

sum is computed in the local machine, and then the update is also computed in the local

machine,  so that  computation  is  ordered 1 million,  whereas  the computation  on this

distributed machine is of order billion. So, hence it will result in a speed up of the total

computation.
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So, these are some results of implementing this implementing this program using the

map reduce paradigm.

(Refer Slide Time: 40:30)

So, here in the x-axis, you can see the number of nodes ok. And in the y-axis, you can

see the time taken in seconds. So, you can see that initially there is a larger drop as you

increase the number of nodes from 5 to 10, but as you keep on increasing the number of

nodes after a while, it saturates ok.
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We take the last example here, which is the example of the page rank algorithm, which is

actually a very complex algorithm to implement ok. So, what is the page rank algorithm?

The page rank algorithm means used to compute the score of web pages using the links

structure of those web pages. So, we all know that web pages point to other web pages,

or they have links to other web pages. So, the idea behind page rank is very simple, the

idea is that if a page receives links from many other pages or many other high ranking

pages, then it has a very high rank. Whereas, if a high ranking page points to another

page, then the page that it points to will also receive a very high rank. So, this is the idea

ok.

So, many so for example,  in this case, these are many low ranking pages, which are

pointing to this high ranking linkage. So, this receives a somewhat higher rank ok. And

these are other somewhat high ranking pages, which are pointing to these, this page. So,

this is a very high ranking page. And now, this page is pointing to this page, so this page

has intermediate rank, but this page points to again these pages ok. So, mathematically

the way this works is the following ok.



(Refer Slide Time: 42:57)

So, you start  with the rank or the score of each page as being 1.  And then on each

iteration; you have a page p contribute the rank of p by the number of neighbors of p to

its neighbors. And then and then you just take the sum of all the contributions from all

the incoming links, and multiply it with 0.85 and then add 0.15 ok. So, this is the page

rank algorithm.

(Refer Slide Time: 43:47)

So,  for  example,  you  start  with  1  for  all  of  these,  then  because  so  this  web  page

contributes 0.5 to both of its neighbors. So, this web page contributes 0.5, because it has



two outgoing links;  this  contributes  1,  this  contributes  0.5,  because it  has again two

outgoing links, and this contributes 1 ok.

(Refer Slide Time: 44:15)

So, at the end of the first iteration, the page rank of this will remain 1.

(Refer Slide Time: 44:23)

The page rank of this sorry page rank of this will become 0.58 sorry yeah. So, and the

page rank of this will become 0.15 ok. Now, you can go forward further.
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And then again, these are the contributions in green. And you can see that now the page

rank of this one has become 1.72, because a high ranking page is pointing here, and this

has reduced a little bit and so on and so forth.

(Refer Slide Time: 44:57)

And you keep doing like this. And it will converge to this one being 1.37, this one being

0.46 and so on and so forth. So, this is the algorithm.
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Now, the question is how will we implement this algorithm in spark? So, for this, we

need two RDDs ok. So, the first RDD is the links RDD, which stores the url. So, so for

each url, it stores it the neighbors of that url or the url’s that point to the this particular url

or rather the url’s that this current url points too ok. And the second RDD stores a url and

its rank ok.

Now, what you do is you take the links RDD and you join it with the ranks RDD. So,

now you have for each url, its neighbors, so the url that it points to and you have the rank

of the current url ok. So, what you do is you take out the neighbors for from this url. And

for all the neighbors, you emit one record which has the following. So, it has the url of

that particular neighbor, and it has the rank of the current url divided by the size of the

neighbors ok. So, this is basically doing all the contributions to all the neighbors ok. So,

we call this RDD the contribs RDD ok.

Now this contribs RDD takes a so now, then you call the reduce by key on this contribs

RDD, because the key here is the url which is receiving this contribution, because which

is the neighbor of the current url ok. And those contributions get added up. And then

finally, for each of these you each so, this creates an RDD with all the contributions, and

then you multiply that with 0.15 and or multiply that with 0.85 and add 0.1, and then you

get the new rank RDD of the for each url. So, then you keep doing this for one to a



certain number of iterations, at the time when this algorithm will converge. So, this is a

spark implementation of the page rank algorithm.

(Refer Slide Time: 48:30)

So, in conclusion, we have seen the motivation, RDD, and we have seen what are what

are  actions  and  transformations.  And  then  we  have  seen  these  three  programming

examples using spark.

Thank you.


