
Scalable Data Science
Prof. Sourangshu Bhattacharya

Department of Computer Science and Engineering
Indian Institute of Technology, Kharagpur

Lecture – 19a
Spark

Hello, everyone. Welcome to the 19th lecture of the NPTEL course on Scalable Data

Science. I am Professor Sourangshu Bhattacharya from Computer Science Department in

IIT, Kharagpur and today we are going to discuss about Spark.

(Refer Slide Time: 00:35)

So, already we have discussed what is big data we have discussed, what is hadoop which

is a open source system for big data, we have discussed what is map reduce and the map

reduce programming paradigm we have seen some map reduce programs and we have

also seen the implementation details of the map reduce paradigm, how map reduce can

be implemented such that it can really work in a distributed setting on a very large data.

(Refer Slide Time: 01:12)

So, today we are going to discuss or rather in this series of lectures we are going to

discuss about spark. So, to begin with we are going to discuss a bit about the

programming language scala which is functional programming language. So, so, there

are two main reasons for discussing this programing language scala; the first reason is

that a spark was itself developed in scala and even now the scala is the most widely used

platform for writing programs for spark.

Or and secondly in general the lot of these distributed computation paradigms includings

spark and map reduced are actually inspired by functional programming paradigm which

is an which is an existing programming paradigm. So, spark is very strongly integrated

with the functional programming language scala and hence understanding the constructs

of scala we will also help us understanding the constructs of spark better.

So, we will cover about the var and the val. So, we will not cover all aspects of scala we

will cover only very limited aspects of scala namely var and val then we will cover

classes and objects. Most importantly we will cover the notion of functions and higher

order functions which are very very important and are directly borrowed and then

generalized and distributed in the spark programming paradigm and also we will discuss

about lists which are also borrowed in the spark programming paradigm for a something

like a distributed list ok.

(Refer Slide Time: 03:31)

So, as discussed earlier scala is both functional and object oriented programming

language. So, basically every value in scala is an object. So, I am assuming that you are

familiar with what is object oriented programming and so, every value in scala is an

object and moreover every function is value and hence an object, including the methods

which are part of objects, ok.

So, scala was designed on top of java. So, when you write the when you see the

programming construct you will see a lot of derivatives from the java and another

important piece of information is that scala is actually a statically typed language just

like java. So, every variable has a type that it can do a local type inference. So, we will

see. So, you do not always have to specify the type.

(Refer Slide Time: 04:35)

So, so, first we discuss about this var and val. So, var you can use var keyword to declare

variables. So, scala has the concept of variables and constants. So, for example, in this

case as you can see the var x defines a variable x. So, at a later point in time in the

program you can say x plus equal to 4 or x is equal to 5 over something and it will work

this is because x is a variable. However, you can also use this keyword val which is used

to declare values or constants.

So, in java these are called const variable constant variables which are. So, for example,

if you say y is equal to 3 and then if you try to do y plus equal to 4 scala will throw an

error because you cannot change a concept. So, this brings the notion of immutability.

So, there are certain variables which are immutable. So, you notice that that we have not

specified any type. So, that type will be inferred.

So, for example, in this case you the type of x will be taken as int because you have

given x is equal to 3. So, later if you try to do x is equal to let us say hello world it will

give an error, ok of course, you can also explicitly mention the type like this ok.

(Refer Slide Time: 06:29)

So, this is an example of a class definition in scala. So, for example, we are trying to

define the class point where which has two values one is xc or rather two components

and both are of type int and one is xc and one is yc and may be these are storing the

coordinates and then this is the method which is the method move which takes dx and dy

as the input. So, these are may be the amount by which you want the current point to

move and then what it just computes the new x as a x plus dx and also the new y as y

plus dy.

So, and then it can printing. So, this is just to get you familiar with the programming

language or programming style of scala.

(Refer Slide Time: 07:34)

Now, once you define a class like we have defined you can define objects of this class.

So, you can say val c which is like a value of from the class new counter and it can also

be a parameterized class something like string which is the class itself is defined as a

parameterized class and the new key word you would create a new object of this class.

And, then you can just access members as you would doing java. So, many of this

constructs had just like java and you can say print ln c dot size. In fact, you can use. So,

since a scala programs run in java virtual machines you can use much of the java library

also ok. Now, in functions is where the new things starts. So, you can the first definition

is a standard definition of functions. So, you have the function name and then you have

the argument. So, this is the argument, x is the argument and then you have the function

body within the basis, ok.

The second definition is a definition which is without braces ok. So, you can so, here this

is bar is the function name, this y is the argument. So, whatever is within the bracket is

the argument list, this is the return type of this function. So, you are saying that the

function bar takes in an integer and returns another integer and then you are just. So, you

are just saying the return value is equal to y plus 42.

So, as if it is just values but it is actually not a value because, now whenever you say bar

and then you pass it a certain argument it will return the. So, let us say you add 10 then it

will return 52. So, it will add 42 to it and return 52 and the lastly of course, you can

define functions which have no argument, no parameters also and no arguments also in

which case of course, these are same as defining constants.

(Refer Slide Time: 10:22)

So, we have already discussed that functions are like values because it is a functional

programming language. So, one way of defining a function literal is to use equal to

greater than symbol, ok. So, there so, so for example, if you say val foo equal to and then

you write within bracket x. So, x is now the parameter of this function, then you write

the symbol of function which is the equal to greater than symbol and then you write the

body of the function ok. So, this defines the new function with the name foo. So,

whenever you have to invoke this function you can just call foo with the parameter and

then it will execute.

So, for example, in this case it checks if x modular 2 is 0, then it returns x by 2 otherwise

it returns 3 x plus 1. So, when you pass 7 it returns 3 into 7 plus 1 which is 22 ok. So, in

general this is the a function literal, ok. So, function literal is of this form that you have

the parameter list followed by the equal to greater than sign or is equal to greater than

symbol followed by the function body and then so, we will come to this for each function

in a minute ok.

(Refer Slide Time: 12:19)

So, so, now, the advantage of this is that now you can for example, you can use pass

around functions like as if they are values. So, you can for example, pass functions as

parameters to other functions which you could earlier not do not only that you can define

functions which take in as one of the parameters other functions ok. So, for example,

take this example. So, we have already said that you can define the function using this

equal to greater than sign. For example, this is one function where you have taken N

arguments and you have given a certain return or you can take just one argument and

take a return and so on and so forth.

So, let us take this example. So, in this example the first statement is defining a function

do twice, ok. So, this function takes in as the first argument of function. So, this first

argument for this function is another function, ok. So, what we have giving here is just

the prototype of this functions. So, basically this function f takes in one integer and

returns one integer and that happens to be the first argument of this do twice function and

the second argument is just an integer, ok.

And, then the return values for this do twice function is that you apply this f function

twice to this argument n which is also an argument to this function and return the value.

So, so, for example, now you define another function let us say collatz which takes in

one integer as an argument and returns another integer as an argument. So, if an integer

is even number then it returns n by 2 else it returns 3 into n plus 1.

So, now if you pass this collatz function to doTwice. So, you call the doTwice function

with collatz and the arguments 7. So, according to this definition it basically applies this

function two times, ok. So, the function so, collatz function two time. So, that the first

time as we all know the output is 22. Now, second time when it applies it knows that it is

a even numbers. So, it just returns n by 2. So, hence the final output is 11,. Similarly, you

can pass another function literal. So, instead of defining a function and then passing it to

doTwice you can just define a function literal here which is like. So, this is your function

literal which basically takes in value a and then returns 101 times a, ok. So, this is your

function.

So, this is the first argument which is the function literal and the second argument is of

course, 3. So, it will apply this 101 times a two times. So, first it will apply 101 times 2

a. So, it will get 303 and then again you will multiply this by 101 and then it gets this

result, ok.

(Refer Slide Time: 16:22)

Now, we want to define two – three types of functions. So, so, as we have seen now that

you can understand that this is something going towards map reduce where you basically

have to pass functions. So, before going in to that you can have two types of functions is

first type is called the lambdas, which are basically nameless functions which take in a

value. So, lambdas are nameless functions which have no side effects, ok. So, these are

functions which have no side effects. So, these are nameless functions which take in

some arguments it can take either one argument or more than one argument and it returns

a value, but does not need anything else, ok. So, this is the first type of function.

Second type of functions is called what are called closures. So, closures are functions

which are sensitive on the context. So, for example, you can have a variable y which is y

is equal to 3 and then you can have a function g, which is basically taking in an argument

x your function g takes in an argument x and which is of type int of course, and then it

does y plus equal to 1 and then returns x plus y, ok. So, this function not only takes in the

arguments that it is passed, but also utilizes this variable y, ok. So, many functions do

this for example, methods in of a class can have dereference the local variables of the

that class while taking in also the arguments.

So, we will see how these are tackled why these are important, but note that these

functions can also be context sensitive, ok.

Now, so, we will now go into some functions.

(Refer Slide Time: 18:55)

So, before going into functions we want to define one more thing which is called the lists

ok. So, lists are like arrays ok. So, for so, this is an example of a list, ok. So, and you can

also have a list which is not populated, in which case you have to give the type of course.

So, lists like strings so, these are arrays, but these are immutable arrays, and so, so lists

are like a. So, what we think in the real world that these are list of values which you need

to operate on ok.

So, for example, you can. So, there are many many functions which are defined on list

for example, you can use list dot head to get the first entry of the list or you can use list

dot tail to get the last element of the list. In general you can get the i-th element of list.

However, you cannot do something like this that list dot i is equal to value ok, because it

is immutable.

(Refer Slide Time: 20:27)

Now, with lists this colour defines some of this operation. So, the first operation is called

the map operations, ok. Now, these are also called higher order methods or higher order

functions from scala point of view it is not much different than an existing function.

However, from programmers point of view these are higher order functions because they

take in another function as an argument. So, what does the map function do for example.

So, the map function is a member function of the list class, ok.

And, when you call, so, let us say you define a list which is ll, and then you call the map

function on the list and parameter to this map function is the double function. So, another

way of writing the same thing is you call ll dot map and then as a parameter you just say

double. Now, note that double is defined as a function here, ok. So, what this will do is it

will return another list where every element of the original list has been doubled, ok. So,

what map function is doing is it is being called on a list. So, it is the member function of

a list it takes in an another function and then applies that function to every individual

element in this list and returns the resulting list as a new list, ok. So, this is what map

function does.

Similarly, you can have a filter function ok. So, the filter function also works on

elements individual elements of a list, ok. It takes in a function which basically it is a

Boolean valued function on the type of element. So, note one thing that the value the

type of the list. So, list is a parameterized type. So, your list you can have list of integer,

you can have list of strings etcetera. Now, this double function must be of appropriate

type such that if it is being called on a list of integers, it should take in as argument an

integer which was the case in this case and if it is being called on a list of strings it

should take in as argument a string, ok. So, otherwise there will be error throne, hm.

Now, similarly here so the filter function takes in as an argument a function a Boolean

valued function. So, this function takes in. So, the function that is to be supplied to the

filter function has to be a function which returns either true or false as an as a return

value and now for the filter function simply returns a list for which the resulting elements

evaluate to true according to the supplied function, ok.

So, for example, in this case a if you call filter with underscore less than or equal to 5 or

which is same as this. So, if you call so, n and then equal to greater than n less than 5,

which basically means that it evaluates true when the argument is less than 5 otherwise

false, then it will only select those which are those elements which are less than 5.

(Refer Slide Time: 24:31)

So, there are many other higher order methods which one can check basically these are

filter or not count for all exists find an sort with, ok. So, you can you can check the scala

reference for all the higher order methods that one can use.

So, now, just to sum up. So, scala is the functional programming language which allows

you to treat functions as though there are their values. So, functions can be passed to

other functions, functions can be part of a function and so on and so forth, and then you

have higher order function which can operate on these lower order, which can take these

simple functions as input and then do adaptive kind of computation based on the input

function that is given.

(Refer Slide Time: 25:58)

So, now we start discussing sparks. So, what is spark? So, spark is an in memory cluster

computing platform for iterative and interactive applications, ok. So, it is a open source

aperture project which is available at this URL spark dot aperture dot arc and it is free for

download and so, anybody can use it.

(Refer Slide Time: 26:38)

So, so a little bit of background on spark. So, spark was started in AMPlab at UC

Berkeley, this was around 2012 it and then they came up with this concept of what is

called resilient distributed datasets,. So, these are the main concept behind spark, we will

come to what they are and why they are so interesting,. So, one of the advantages of

spark is that unlike hadoop which is mostly for data intensive computation spark is a bit

more flexible. So, it can be used for both data and computational intensive computations,

ok. Then just like hadoop spark is fall tolerant it is as I have already mentioned

integrated with scala, it has all the goodies that hadoop provides or all the good

properties that hadoop provides like strangle handling and data locality and it is also very

easy to use, ok.

(Refer Slide Time: 27:56)

So, so, I think we already have the background. So, the basic idea is that we want to

perform big data computation on a set of community clusters. So, so there are of course,

many many applications like an industry you can have web search, you can have

machine translation, you can have ad targeting in research you can have bioinformatics,

NLP, climate simulation etcetera, ok.

So, now typically for such data intensive computation one tries to use the map reduce

frame work. So, basically the understanding here is that can we use framework or the

computation that map reduce provides, but make it more powerful for the programmer or

in other words the programmer should be able to express a wider array of computations

than what he or she could using map reduce.

(Refer Slide Time: 29:13)

So, what is the map reduce computation model? The map reduce computation model is

something like this that you have this input which is basically the a stable storage. So,

typically for the big data framework we will people use distributed file system as the

storage and then there are some mapper jobs which run and then there is a shuffling that

goes on here and then there is a there is some reduce jobs which run and then finally, you

write to some stable storage which is again typically a distributed storage, ok.

(Refer Slide Time: 30:00)

Now, the question is so why do we do this, ok. So, one thing we have. So, we have seen

the advantage or the benefits of this kind of map reduce frameworks or the benefits of

this. So, the first is that you have scalability and fall tolerance, then the run time can

decide on everything it can decide on task on the task scheduling it can automatically

recover for from failures and basically it can scale very well,. But, the question is this the

only computation model for which we can have all this advantage, ok.

So, now let us see, what are the problems with this computation model, ok.

(Refer Slide Time: 30:54)

So, the problems with this computation model is that these two, ok. So, first iterative

algorithms are not very easily expressed in hadoop map reduce. So, this is. So, first of all

you have to write multiple hadoop jobs in a loop in order to express an iterative

computation which is as we have seen already very (Refer Time: 31:25). Secondly, this

will be very very slow because every time you write you your hadoop job or your map

reduce job actually takes as input, data sum from stable storage does the processing

distributed processing and then rights data towards stable storage, ok.

So, it is very inefficient if you want to use some iterative algorithm and many of the

algorithms are in machine learning for example, are iterative algorithms. The other

problem is when you have a lot of interactive tools ok. So, hadoop was designed for

batch processing. So, the processing was something like you have a certain amount of

data and you want to extract some information out of that data in a distributed and

scalable manner. So, you take the data as the input and run the map reduce job. However,

what if you want to first extract a certain amount of information from the data and then

you want to refine that.

So, for example, first you may want to see the minimum and the maximum temperatures

for a particular country and then once you have found that out you are the answer you are

looking for was not there may be you want to find the minimum and maximum

temperature for a certain the cities of one particular country. So, the data that your

processing is the same ok, but you now want a different set of output in that case you

have to run a different map reduce job. However, as we shall see in spark you can do it

much much faster. So, this is the interactive computation, ok. So, we will see how we are

able to achieve all this in spark in the next lecture.

Thank you.

