Scalable Data Science
Prof. Sourangshu Bhattacharya
Department of Computer Science and Engineering
Indian Institute of Technology, Kharagpur

Lecture - 03
Background on Linear Algebra

Welcome to the NPTEL course on Scalable Data Science, lecture number 3. Today’s
lecture is on background on linear algebra which will be needed for the course. I am
Professor Sourangshu Bhattacharya of Department of Computer Science and

Engineering, IIT, Kharagpur.
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In this review

* Recall concepts we'll need in this class
* Geometric intuition for linear algebra
* Outline:

- Basic concepts.

- Linear transformations & vector spaces.
— Properties of linear systems.

— Eigenvalues & eigenvectors.

— Singular Value Decomposition. B
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In this course, in this lecture we will recall the concepts that we need in this class. We
will especially go into the geometry intuition for linear algebra. We will outline some
basic concepts and then we will discuss linear transformations and vector spaces. Then
we will discuss properties of linear systems, then we will discuss eigenvalues and
eigenvectors of matrices and finally, we will disc briefly discuss singular value

decomposition.
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Basic concepts

* Vectorin R™is an ordered set of n 1

real numbers. 6
- egv=(1634)isinR* / j
- (1,6,3,4) is a column vector:

- asopposed to a row vector; ——— (1 6 3 4)

*m— by —n matrixis an object with

2 8
m rows and n columns, each entry fill —,
. 4 78 6
with a real number: )
9 3 2
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A vector in R n is an ordered set of n real numbers. So, for example, this is a vector in R
4 and this is a column vector, this is a row vector again in R to the power 4, m by n
matrix is an object with n rows and or m rows and n columns. So, this particular matrix

is a 3 by 3 matrix.
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Basic concepts

¢ Transpose: reflect vector/matrix on line: [\]

i T
a a b il
= (a b) =]
b ¢ d b d
- Note: (Ax)" = xTA"
+ Vector norms:
- Lynomof v = (vy,...,v,) I8 (Z;y7)"?
- Common norms: L, L,
- Linfin!ty
* Length of a vector v is L,(v)

= max; [
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Now, transpose of a vector or a matrix is a reflection of the vector or the matrix along the
diagonal line which is this particular line of the matrix. For example, the matrix a b

transpose the column matrix a b transpose or the column vector a b transpose becomes



the row vector a b whereas, the column, the matrix a b ¢ d transpose becomes the matrix

acbd, ok.

We note that we can have a matrix vector product which is A x the transpose of which
becomes x transpose a transpose. Also note the definition for the vector norms. The L p
norm of a vector v with components v 1 till v k is denoted by summation over i, mod of v
1 to the power p whole raise to the power 1 by p. We will commonly use the L 1 and the
L 2 norms. The L infinity norm of a matrix is the max over all the components the
absolute value of all the components of a vector. Also note that the length of a vector v is

the L 2 norm of the particular vector.
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Basic concepts
* Vector dot product:

ll.V:(H] MZ)O(V] VZ)ZIIIVIJrHZVZ U = \7‘|

- Note dot product of u with itself is the square of J )
the length of u. 9 AN \
« Matrix product (multiplication); % b é p \g)

a, d b, b - \ 0\;\
A . b 12 B - 11 12 x
(azl azz]’ [bll by, (5 <
a.b. +a,b, ab,+a.b A
AB :[ 11711 12721 il=elis 12 22}

P

allbll i aZZbZI a]lbll + aZZbZZ
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Next we go into the dot products. First we define the dot products between 2 vectors u

and v with componentsu 1,u2andv 1,v2assumoverul,uv 1 plusu2,v?2.

So, in general if you have a vector u with components u i and another vector v with
components v i, then u dot v is equal to sum over i u i times v i. Going forward we can
also define the matrix product as given in this example. So, if a matrix Ahasa 11,a 12, a
21 and a 22 and similarly the matrix B then the entries of the matrix AB are of this form

all times b 11 plus a 12 times b 12 and so on and so forth.

In other words the product the entries of the matrix A times B are so the i jth entry is the

ith row of a matrix times jth column of the matrix B ok.
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Basic concepts

* Vector products in matrix multiplication notation:
- Dot product:

T Yy
nev=1y v=(u1 Uy = UV, + UV,
V)

- Outer product:

it uy,

1 ! YUy,
(Vl 14 )

U Uy, Uy,
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We can also define the dot product of two matrices we can represent the 2 vectors in
terms of column matrices or column vectors. And then we can represent the dot product
of 2 vectors u and v in terms of the matrix product u transpose v which is the same.

Similarly we can define the outer product between the 2 vectors as given here.

(Refer Slide Time: 06:43)
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Special matrices

a 00 a b ¢

0 b 0] diagonal [0 d e upper-triangular
00 ¢ 00 f

100 a0 0

0| {identitymatrix) |5 ¢ 0| lower-triangular |8
| ' L A

7\
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There are some special matrices which we will come across in our discussions; the first
one is the diagonal matrix which is given here. As you can see only the entries on the

diagonal have values all the off diagonal entries are 0. Similarly we can define an upper



triangular and a lower triangular matrix, in the upper triangular matrix only the entries
upwards of the diagonal are nonzero all the entries below the low below the diagonal are

nonzero and vice versa.

Another important matrix is the identity matrix which is just the matrix of all 0 entries

and once only in the diagonal positions.
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mMctrices as linear transformations

Multiplication with m X n matrices transform vectors in R™ into vectors in R™
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Next we discuss matrices as linear transformations. The first transformation that we
discussed is the scaling transformation. You see that the matrix a here transforms this
vector 1 1 which is the vector like this as 5, 5 which is just a scaled version of the

original vector, hence this transformation is called the scaling transformation.

Next we discuss the rotation transformations. Note that the matrix 0, minus 1, 1, O rotates
this vector. So, when matrices when multiplied with this vector 1 1 produces the vector
minus 1 1, this is the vector 1 1 and this is the vector minus 1 1. Note that the length of
both the vectors are same however, this vector has been rotated by 90 degrees. So, this

matrix is called a rotation matrix.
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Similarly, we can define a reflection matrix which takes the vector 1 0 which takes the
vector 1 0 and transforms it to the vector 0 1. In other words it is performing a reflection
about the line for about the 45 degree line another matrix is the projection matrix which
takes for example, this vector 11 and projects it on to the x axis. Note that only the there

is only there is a one in the first entry and all the other entries are 0. Such a matrix would

T KHARAGPUR

I 0A0
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Matrices as linear transformations
0 1Y1 0

Reflection

take any vector and project it on to the first dimension.
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] Vector spaces P

Formally, a vector space is a set of vectors which is closed under addition and

multiplication by real numbers (also called linear combination).
X=0qUt ettty

* Asubspace is a subset of a vector space which is a vector space itself, e.g. the
plane =0 is a subspace of R? (It is essentially RZ).

+ We'll be looking at R and subspaces of R"

Our notion of planes in R? may
be extended to hyperplanes in

R" (of dimension n-1)

Note: subspaces must include
the origin (zero vector).
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Next we describe an important concept of vector spaces formally vector spaces are a set
of vectors which are closed under addition and multiplication by real numbers. This is
also sometimes called a linear combination of the vectors. So, for example, here we have
shown that the vector x is a linear combination of vector v 1 till v n with where v 1 till v
n are vectors and alpha 1 till alpha n are the corresponding real numbers which they are

multiplied by.

Closure means that any element in this set can be generated as a linear combination of
elements other elements in the set. A sub space is a subset of a vector space which is a
vector space in itself. For example, you can see here that this coordinate axis denotes the
3 dimensional vector space. So, for example, if you take the vectors 10001 0and 00 1,

as the may be [ will make it 0 1 0.

(Refer Slide Time: 12:14)

] Vector spaces

*  Formally, a vector space is a set of vectors which is closed under addition and
multiplication by real numbers (also called linear combination).
X =0Tt apty
*  Asubspace is a subset of a vector space which is a vector space itself, e.g. the
plane z=0 is a subspace of R® (It is essentially R%).

+  We'll be looking at R" and subspaces of R
g P o ((
Our notion of planes in R? may O
be extended to hyperplanes in L'b”

R" (of dimension n-1)

Note: subspaces must include
the origin (zero vector).
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So, if we take the vectors 1 000 1 0 and 0 0 1 this can generate all the vectors in R 3. A
linear combination of these 3 vectors can generate all the vectors in R 3 however, if we
set z 3 equal to O then this and this are sufficient to generate this subspace for which z
equals 0. We can also extend the notion of planes to n dimensional sub spaces using

hyper planes which we will discuss next.
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] Matrices as sets of constraints

Matrix equations (linear system of equations) can encode a set of linear constraints
x+y+z=1
2x-y+z=12
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This is linear equations, so matrix equations or systems of linear equations can also
encode a set of linear constraints. So, for example, the first equation encodes a linear
constraints which is denoted by this hyper plane ok. And the second one encodes another
set another linear constraints which is denoted by the second hyper plane ok, together

they can be written as a system of linear equations in matrix notation as given below.

(Refer Slide Time: 14:13)
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+ Ax = bissolvable iff b may be

10 b] written as a linear combination of
u
73 i b2 the columns of A
y + The set of all possible vectors b
N b3 forms a subspace called the

column space of A
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Now, a system of linear equations can be generally written or compactly written in

matrix notation as A x equals b where a is the coefficient matrix which is in this case this



matrix, X is a column vector and b is another column vector. If we want to solve this
system of equation A x equals b in terms of x it is solvable only if the vector b can be
written as the linear combination of columns of A. So, for example, in this case the
columns of a matrix are 1 2 1 and 0 3 3. So, only those vectors, which can be written in
this form for u times 1 2 1 plus v times 0 3 3 equals b; therefore, the sub space given by

this hyper plane.

The set of possible vectors generated by generated by a linear combination of columns of

a matrix is called column space of the matrix A.
(Refer Slide Time: 16:01)
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Linear system & subspaces

The set of solutions to Ax = 0 forms a subspace called
the null space of A.

10 0

u
23 (v] =0 - Null space: {(0,0)}
1 3 0

1 0 1Yx) (O

23 5)y|=|0
A 0 = Null space: {(c,c,c)}
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Another important concept is the null space of a matrix A. The null space of a matrix A is
all those vectors which are solutions of equation A x equals 0 or A x is equal to 0 vector.
So, for example, 0 0 is a part of null space is always a part of null space or the origin is

always the part of null space because any vector multiplied by 0 will give 0.

You can check that for this coefficient matrix all vectors of the form ¢ ¢ and minus ¢ will
actually generate the 0 vector, hence this set of all vectors of this form ¢ ¢ and minus c,

where ¢ can vary ¢ can be any number constitute the null space of this particular matrix.
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Linear independence and basis

+ Vectors vy, ..., v, are linearly independent if ¢,v, +
+ Ckvk = 0 Imp||eS Cl == Ck = 0

s 2 i.e. the nullspace is the origin

[ 1 Ife) (0

Ly vy e (=0

(1,0) } ‘ ‘ G 0

1 0 0 Recall nullspace contained
u only (u,v) = (0,0).

2 3( J: 0 i.e. the columns are linearly

v ;
independent.
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Next we discuss the concept of linear independence, a set of vectors v 1 to v k are
linearly independent if a linear combination of this vectors equals to 0 implies that the
coefficients are all 0. In other words the set of vectors are linearly independent if their

null space is the origin.
Note that the origin is always content in the null space.
(Refer Slide Time: 18:08)

1 Linear independence and basis

« [ all vectors in a vector space may be expressed as
linear combinations of v,, ..., v, then v,, ..., v, Span the

R | B

2 1
2 0 1
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If all vectors in a vector space can be expressed as linear combination of a set of vectors
say v 1 to v k then the vectors v 1 to v k are said to span the entire vector space. So, as

discussed this 3 vectors span the entire vector space of R 3.

Similarly, you can see that this, this and this vector together also span the vector space of
R 3 and any vector can be generated as a linear. For example, the vector 2 2 2 in this case

can be generated as a linear combination of this vector.
(Refer Slide Time: 19:11)
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Linear independence and basis

+  Abasis is a set of linearly independent vectors which span the space.

+ The dimension of a space is the # of “degrees of freedom” of the
space; it is the number of vectors in any basis for the space.

+  Abasis is a maximal set of linearly independent vectors and a minimal

set of spanning vectors,
2 9 3) (1
2(=1572|+1291(+2/2
2 0 o) L b

Eh
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A basis of a vector space is a set of linearly independent vectors which span the vector
space. The dimension of a vector space is the number of degrees of freedom of a vector
space or it is the maximal set of linearly independent vectors which can generate the
vector space or alternately it is the minimal set of spanning vectors of the vector space

this two are equivalent.

So, the vector space R 3 has dimension 3 as we know that 3 vectors are sufficient to
generate all the points in R 3 and more than 3 vectors are not necessary, rather less than 3

vectors are not sufficient to generate all the points in R 3.
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About subspaces

*  The rank of A is the dimension of the column space of A.

+ |t also equals the dimension of the row space of A (the
subspace of vectors which may be written as linear
combinations of the rows of A).

1 0 (1,3)=(2,3)-(1,0) b
23 Only 2 linearly independent R
1 3 rows, so rank = 2.
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Next we discuss the concept of rank of a vector space, rank of a matrix sorry the rank of
a matrix is the dimension of the column space of the matrix. For example, this matrix has
a rank 2 because it has the dimension of the space generated by its columns is 2. In this

case, note that it also has 2 columns and both the columns are linearly independent.

You may note that this also equal to the dimension of the row space. So, for example, in
this case even though there are 3 rows you can check that one of the rows can be
generated by a linear combination of the other two rows. For example, 1, 1 and 3 can be

generated as a linear combination of 2 and 3 in this manner.
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About subspaces

Fundamental Theorem of Linear Algebra:

If Aism x n with rankr,
Column space(A) has dimension r
Nullspace(A) and Nullspace(A) has dimension 1 — 1 (= nullity of A)

Row space(A) = Column space(A') has dimension 1

Rank-Nullity Theorem: rank + nullity = n
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Next we discuss an important result in linear algebra which is call also called the
fundamental theorem of linear algebra which is given a matrix A let us say it is m by n
matrix with rank R, column space of a has dimension R. This is coming from the
definition of rank which says the rank of a matrix is the dimension of the column space
of a matrix. Also the null space of a or the null space of a transpose has dimension n

minus R which is also sometimes called the nullity of A, ok.

Hence and also the since the dimension of row space and the dimension of the column
space are same hence the dimension of the row space or which is also the dimension of
the column space of A transpose is also R hence the important result that given the n

dimensional space the rank plus nullity of the matrix A is equal to n.
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Matrix inversion

* Tosolve Ax = b, we can write a closed-form solution if we can find a matrix
A7t st AAY = A7YA = [ (identity matrix)

¢« ThenAx = biffx = A"th:
x=1Ix = A x = 4

* Ais non-singular iff A™ exists iff Ax = b has a unique solution.

* Note: If A1 B exist, then (AB)* = B1AZ
and (AT} = (A1)7

Sourangshu Bhattacharya
~amputer Science and Engg.
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Next we discuss the concept of inverse of a matrix. In order to solve the system of linear
equations A x times b, A times x equals b we can write a closed form solution if we can
compute a matrix called A inverse which has the property that A times A inverse equals A
inverse times A equals identity. Then we can simply write x as A inverse times b. We can
verify that this is indeed true because you can write identity here you can write x has A x

and then you can write the identity as A inverse A and then you can write Ax as b.

The matrix A is called non singular matrix if and only if such matrix A inverse exist and

if that happens the system of linear equations A x equals b has a unique solution.
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] Special matrices

+ Matrix A is symmetricif A = AT

+  Ais positive definite if x"Ax > 0 for all non-zero x (positive semi-definite if inequality is

——

not strict).
10 0Va 1 0 0Ya
b o1 ofp|=aterree @00 -1Ofbl=d B
oo 1l — 0 0 l)c

e —
S

P~
Useful fact: Any matrix of form_l}lis positive semi-definite.
To see this, x' (ATA)x = (x"A")(Ax) = (Ax)"(Ax) 2 0

“ (\A\\
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Some special definitions a matrix A is called symmetric of A equals A transpose.
Furthermore, a matrix A is called positive definite if for any vector x x transpose A X is

greater than 0 and if the inequality is not strict then it is called positive semi definite.

So, let us see a common positive semi definite matrix which is the identity matrix. Note
that if we have any vector a b ¢ then if we call this vector as x then x transpose A X is
nothing but a square plus b square plus ¢ square which is positive for all values of a b
and c. Hence all vectors x, hence this matrix is positive semi definite whereas is not

necessarily a positive semi definite matrix, ok.

A very useful fact is any matrix of the form A transpose A is always positive semi
definite because you can write X transpose A transpose A X as A x transpose A x which is

nothing but the norm of A x or rather norm of A x square L 2 norm of A x square.
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Determinants

¢ Ifdet(A) = 0, then Als singular, also called rank deficient
* |f det(A) #0, then A s invertible.
* To compute:

a b
det( J—aa'—bc
¢c d) ——
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We also discuss the notion of determinant. Determinants are numbers which are
calculated from a matrix for a 2 by 2 matrix of with entries a b ¢ d the determinant value
is given by ad times dc, ad minus bc sorry. And for a 3 cross 3 matrix the determinant is
given by eh is computed recursively as a 11 times determinant of this sub matrix minus a
12 times determinant of the sub matrix formed by taking these two rows and plus a 13

times the determinant of this sub matrix.

For higher order matrices the determinants can be defined similarly. And important thing
to note is that if a matrix A is singular or rank deficient if and only if its determinants is

0, if its determinants is not 0 then the matrix is invertible.
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Eigenvalues & eigenvectors e
o
* How can we characterize matrices? 4 & b /
5 VL

+ The solutionsto Ax = Ax in the form of eigenpairs (A,x) =
(eigenvalue,eigenvector) where x is non-zero.

+ Tosolvethis, (A- Al)x = 0

* Misan eigenvalue iff det(A- AI) = 0
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Next we discuss the important concept of eigenvalues and eigenvectors. So, the question
comes how can we characterize a set of matrices. One way to characterize the set of
matrices is to find solutions of equation of this form A x equals lambda x, for all x ok.
So, all alls all pairs of here note here that here lambda is a value and x is a vector. So,

lambda is a number and x is a vector, ok.

So, of course, if x is equal to 0 and lambda is equal to O this equation is trivially satisfied.
So, we are seeking solutions which are nonzero or where x is both x and lambda are
nonzero,. One way to solve this is to look for solutions to this linear system of equations

which is possible only if the determinant of this coefficient matrix is 0, ok.
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] Eigenvalues & eigenvectors

(A-N)x=0
s an eigenvalue iff det(A - AI) = 0

Example:

1 4 5
A=[0 3/4 6]\/

0 0 1/2

-4 4 5
dd-A=| 0 34-4 6 |=(-neH-a2-4 =0
0 WA= T

A=1A=3/44=1/2 S/
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Using this concept we can solve the eigenvalue problem for example, given this
particular matrix we can compute or given this matrix a we can compute the matrix A
minus lambda I. And then we can compute the determinant of this matrix which in this
case turns out to be this particular number. In general we will have a polynomial in
lambda we can solve this equal to 0 to get the get eh the degree of the polynomial times
values. And in case of n cross n matrix this turns out to be n the degree of this

polynomial or which is also called the characteristic polynomial turns out to be n.

By solving this we can get the lambda after which we can solve for x.
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Eigenvalues & eigenvectors AT
A= 20 Eigenvalues X = 2, 1 with {\W s
0 1) eigenvectors(1,0),(0,1)

Eigenvectors of a linear transformation A are not rotated (but will be scaled by
the corresponding eigenvalue) when A'is applied.

\/ (01)
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Now, the significance of eigenvalues and eigenvectors is that the eigenvalues and
eigenvectors scale the the or or the eigenvectors are the directions in which any vector
when transform by this matrix A is just rescaled or scaled by the eigenvalue. This is
because as you can see for the eigenvectors direction let say a your A x become n a

becomes nothing but a value lambda times x.

This is the interpretation which is shown here. So, for example, in this case this matrix
scales any vector in this direction, as in this direction by 1 and any vector in this
direction by 2, ok. Hence this is a eigenvector and this is a another eigenvector and the
corresponding eigenvalue for this eigenvector is 2 whereas, the corresponding eigenvalue

for this eigenvector is 1.
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] Properties of Eigenvalues and Eigenvectors

- If 4, ..., 4, are distinct eigenvalues of a matrix, then the
corresponding eigenvectors e,, .., e, are linearly independent.

— If e, is an eigenvector of a matrix with corresponding eigenvalue 4,
then any nonzero scalar multiple of e, is also an eigenvector with /\OU\’
eigenvalue 4,. A e =

— Areal, symmetric square matrix has real eigenvalues, with orthu?il

eigenvectors (can be chosen to be orthonormal). /ﬂ‘ y
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Now, eigenvalues and eigenvectors have very interesting properties. So, the first property
is if lambda 1 till lambda n are distinct eigenvalues of a matrix then the corresponding
eigenvectors e 1 till e n are linearly independent. Next if e 1 is a eigenvector of a matrix
with corresponding eigenvalue n then any nonzero scalar multiple of e 1 is also an
eigenvector with eigenvalue lambda 1. This is very clear because you can check that A of

let say alpha times x is also equals lambda of alpha times x.

The third property is also very useful any real symmetric square matrix has real
eigenvalue with orthogonal eigenvectors which can also be chosen to be orthonormal.
So, in other words your set if eigenvectors forms a orthonormal matrix and the set of
eigenvalues are real and symmetry. In fact, if you calculate all the eigenvectors you can
write the matrix A as a matrix of eigenvectors u times lambda times u transpose. So, this
is also called the eigenvalue decomposition of a matrix, and where u is the matrix of all

eigenvectors and lambda is diagonal matrix of all eigenvalues.
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SVD: Singular Value Decomposition
+  Any matrix A (m X n) can be written as the product of three matrices:
A= UDV’
- Uisan mxm orthonormal matrix

- Disan mxn diagonal matrix. Its diagonal elements, o,, o, .., are called the
singular values of A, and satisfy 0, 2 0, 2. 20.

~ Visan nxn orthonormal matrix

+ Example:ifm>n  [o o o 1
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Extending this is another concept called the singular value decomposition. So, given any
matrix a which is an m cross n matrix it can be written as a product of 3 matrices U
which is an m cross m orthogonal matrix which or orthonormal matrix D which is an m
cross n diagonal matrix with. So, this is the matrix U which is an m cross m orthogonal
matrix or orthonormal matrix the matrix D is m cross n diagonal matrix. So, in this case
let say if m is greater than n. So, it will only have n many diagonal values rest all the

values will be 0 and v which is another n cross n orthonormal matrix.

This decomposition or this way of writing a matrix A is called the singular value

decomposition.
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] Some Properties of SVD

— The rank of matrix A is equal to the number of nonzero singular
values o;.
— Asquare (n x n) matrix A is singular
if and only if
at least one of its singular values @, .., g, is zero.
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The singular value decomposition has some very in important properties, so very
important and useful property. So, for example, the rank of matrix A is equal to the
number of nonzero singular values of the matrix A. So, every matrix may not have
eigenvalue decomposition in real numbers but every matrix will have a singular value
decomposition and once you calculate the singular value decomposition, the number of

nonzero singular value determines the rank of a matrix.

For a square matrix A you can see that it will have for a n cross n square matrix A it will
have sigma 1 till sigma n many singular values and it will be non singular it will be non
singular only if none of the singular values sigma 1 till sigma n is 0. In a other words the

matrix will be singular if at least one of the singular value sigma 1 till sigma n is 0.
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So, with this we come to an end of this introduction to linear algebra. The reference for
this a good reference for this is the introduction to linear algebra book by Gilbert Strang

and another very nice reference is the Wikipedia.



