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Lecture - 03
Background on Linear Algebra

Welcome to the NPTEL course on Scalable Data Science,  lecture number 3. Today’s

lecture is on background on linear algebra which will be needed for the course. I am

Professor  Sourangshu  Bhattacharya  of  Department  of  Computer  Science  and

Engineering, IIT, Kharagpur. 
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In this course, in this lecture we will recall the concepts that we need in this class. We

will especially go into the geometry intuition for linear algebra. We will outline some

basic concepts and then we will discuss linear transformations and vector spaces. Then

we  will  discuss  properties  of  linear  systems,  then  we  will  discuss  eigenvalues  and

eigenvectors  of  matrices  and  finally,  we  will  disc  briefly  discuss  singular  value

decomposition. 
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A vector in R n is an ordered set of n real numbers. So, for example, this is a vector in R

4 and this is a column vector, this is a row vector again in R to the power 4, m by n

matrix is an object with n rows and or m rows and n columns. So, this particular matrix

is a 3 by 3 matrix. 
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Now, transpose of a vector or a matrix is a reflection of the vector or the matrix along the

diagonal line which is this particular  line of the matrix.  For example,  the matrix a b

transpose the column matrix a b transpose or the column vector a b transpose becomes



the row vector a b whereas, the column, the matrix a b c d transpose becomes the matrix

a c b d, ok. 

We note that we can have a matrix vector product which is A x the transpose of which

becomes x transpose a transpose. Also note the definition for the vector norms. The L p

norm of a vector v with components v 1 till v k is denoted by summation over i, mod of v

i to the power p whole raise to the power 1 by p. We will commonly use the L 1 and the

L 2 norms. The L infinity  norm of a matrix  is the max over all  the components  the

absolute value of all the components of a vector. Also note that the length of a vector v is

the L 2 norm of the particular vector. 
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Next we go into the dot products. First we define the dot products between 2 vectors u

and v with components u 1, u 2 and v 1, v 2 as sum over u 1, u v 1 plus u 2, v 2.

So, in general if you have a vector u with components u i and another vector v with

components v i, then u dot v is equal to sum over i u i times v i. Going forward we can

also define the matrix product as given in this example. So, if a matrix A has a 11, a 12, a

21 and a 22 and similarly the matrix B then the entries of the matrix AB are of this form

a 11 times b 11 plus a 12 times b 12 and so on and so forth.

In other words the product the entries of the matrix A times B are so the i jth entry is the

ith row of a matrix times jth column of the matrix B ok. 
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We can also define the dot product of two matrices we can represent the 2 vectors in

terms of column matrices or column vectors. And then we can represent the dot product

of 2 vectors u and v in terms of the matrix product u transpose v which is the same.

Similarly we can define the outer product between the 2 vectors as given here.
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There are some special matrices which we will come across in our discussions; the first

one is the diagonal matrix which is given here. As you can see only the entries on the

diagonal have values all the off diagonal entries are 0. Similarly we can define an upper



triangular and a lower triangular matrix, in the upper triangular matrix only the entries

upwards of the diagonal are nonzero all the entries below the low below the diagonal are

nonzero and vice versa. 

Another important matrix is the identity matrix which is just the matrix of all 0 entries

and once only in the diagonal positions. 
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Next  we discuss  matrices  as  linear  transformations.  The first  transformation  that  we

discussed is the scaling transformation. You see that the matrix a here transforms this

vector 1 1 which is the vector like this as 5, 5 which is just  a scaled version of the

original vector, hence this transformation is called the scaling transformation. 

Next we discuss the rotation transformations. Note that the matrix 0, minus 1, 1, 0 rotates

this vector. So, when matrices when multiplied with this vector 1 1 produces the vector

minus 1 1, this is the vector 1 1 and this is the vector minus 1 1. Note that the length of

both the vectors are same however, this vector has been rotated by 90 degrees. So, this

matrix is called a rotation matrix. 
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Similarly, we can define a reflection matrix which takes the vector 1 0 which takes the

vector 1 0 and transforms it to the vector 0 1. In other words it is performing a reflection

about the line for about the 45 degree line another matrix is the projection matrix which

takes for example, this vector 11 and projects it on to the x axis. Note that only the there

is only there is a one in the first entry and all the other entries are 0. Such a matrix would

take any vector and project it on to the first dimension. 
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Next we describe an important concept of vector spaces formally vector spaces are a set

of vectors which are closed under addition and multiplication by real numbers. This is

also sometimes called a linear combination of the vectors. So, for example, here we have

shown that the vector x is a linear combination of vector v 1 till v n with where v 1 till v

n are vectors and alpha 1 till alpha n are the corresponding real numbers which they are

multiplied by. 

Closure means that any element in this set can be generated as a linear combination of

elements other elements in the set. A sub space is a subset of a vector space which is a

vector space in itself. For example, you can see here that this coordinate axis denotes the

3 dimensional vector space. So, for example, if you take the vectors 1 0 0 0 1 0 and 0 0 1,

as the may be I will make it 0 1 0. 
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So, if we take the vectors 1 0 0 0 1 0 and 0 0 1 this can generate all the vectors in R 3. A

linear combination of these 3 vectors can generate all the vectors in R 3 however, if we

set z 3 equal to 0 then this and this are sufficient to generate this subspace for which z

equals 0. We can also extend the notion of planes to n dimensional sub spaces using

hyper planes which we will discuss next.
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This  is  linear  equations,  so matrix  equations or systems of linear  equations  can also

encode a set of linear constraints. So, for example, the first equation encodes a linear

constraints which is denoted by this hyper plane ok. And the second one encodes another

set another linear constraints which is denoted by the second hyper plane ok, together

they can be written as a system of linear equations in matrix notation as given below. 
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Now, a  system of  linear  equations  can  be  generally  written  or  compactly  written  in

matrix notation as A x equals b where a is the coefficient matrix which is in this case this



matrix, x is a column vector and b is another column vector. If we want to solve this

system of equation A x equals b in terms of x it is solvable only if the vector b can be

written as the linear combination of columns of A. So, for example,  in this  case the

columns of a matrix are 1 2 1 and 0 3 3. So, only those vectors, which can be written in

this form for u times 1 2 1 plus v times 0 3 3 equals b; therefore, the sub space given by

this hyper plane. 

The set of possible vectors generated by generated by a linear combination of columns of

a matrix is called column space of the matrix A. 

(Refer Slide Time: 16:01)

Another important concept is the null space of a matrix A. The null space of a matrix A is

all those vectors which are solutions of equation A x equals 0 or A x is equal to 0 vector.

So, for example, 0 0 is a part of null space is always a part of null space or the origin is

always the part of null space because any vector multiplied by 0 will give 0. 

You can check that for this coefficient matrix all vectors of the form c c and minus c will

actually generate the 0 vector, hence this set of all vectors of this form c c and minus c,

where c can vary c can be any number constitute the null space of this particular matrix. 
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Next we discuss the concept of linear independence,  a set  of vectors v 1 to v k are

linearly independent if a linear combination of this vectors equals to 0 implies that the

coefficients are all 0. In other words the set of vectors are linearly independent if their

null space is the origin. 

Note that the origin is always content in the null space. 
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If all vectors in a vector space can be expressed as linear combination of a set of vectors

say v 1 to v k then the vectors v 1 to v k are said to span the entire vector space. So, as

discussed this 3 vectors span the entire vector space of R 3. 

Similarly, you can see that this, this and this vector together also span the vector space of

R 3 and any vector can be generated as a linear. For example, the vector 2 2 2 in this case

can be generated as a linear combination of this vector. 
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A basis of a vector space is a set of linearly independent vectors which span the vector

space. The dimension of a vector space is the number of degrees of freedom of a vector

space or it is the maximal set of linearly independent vectors which can generate the

vector space or alternately it is the minimal set of spanning vectors of the vector space

this two are equivalent.

So, the vector space R 3 has dimension 3 as we know that 3 vectors are sufficient to

generate all the points in R 3 and more than 3 vectors are not necessary, rather less than 3

vectors are not sufficient to generate all the points in R 3. 
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Next we discuss the concept of rank of a vector space, rank of a matrix sorry the rank of

a matrix is the dimension of the column space of the matrix. For example, this matrix has

a rank 2 because it has the dimension of the space generated by its columns is 2. In this

case, note that it also has 2 columns and both the columns are linearly independent. 

You may note that this also equal to the dimension of the row space. So, for example, in

this  case  even though there  are  3  rows you can  check that  one of  the  rows can  be

generated by a linear combination of the other two rows. For example, 1, 1 and 3 can be

generated as a linear combination of 2 and 3 in this manner. 
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Next  we  discuss  an  important  result  in  linear  algebra  which  is  call  also  called  the

fundamental theorem of linear algebra which is given a matrix A let us say it is m by n

matrix  with  rank  R,  column  space  of  a  has  dimension  R.  This  is  coming  from the

definition of rank which says the rank of a matrix is the dimension of the column space

of a matrix. Also the null space of a or the null space of a transpose has dimension n

minus R which is also sometimes called the nullity of A, ok. 

Hence and also the since the dimension of row space and the dimension of the column

space are same hence the dimension of the row space or which is also the dimension of

the column space of A transpose is also R hence the important result that given the n

dimensional space the rank plus nullity of the matrix A is equal to n. 
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Next we discuss the concept of inverse of a matrix. In order to solve the system of linear

equations A x times b, A times x equals b we can write a closed form solution if we can

compute a matrix called A inverse which has the property that A times A inverse equals A

inverse times A equals identity. Then we can simply write x as A inverse times b. We can

verify that this is indeed true because you can write identity here you can write x has A x

and then you can write the identity as A inverse A and then you can write A x as b. 

The matrix A is called non singular matrix if and only if such matrix A inverse exist and

if that happens the system of linear equations A x equals b has a unique solution. 
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Some  special  definitions  a  matrix  A is  called  symmetric  of  A equals  A transpose.

Furthermore, a matrix A is called positive definite if for any vector x x transpose A x is

greater than 0 and if the inequality is not strict then it is called positive semi definite.

So, let us see a common positive semi definite matrix which is the identity matrix. Note

that if we have any vector a b c then if we call this vector as x then x transpose A x is

nothing but a square plus b square plus c square which is positive for all values of a b

and c. Hence all vectors x, hence this matrix is positive semi definite whereas is not

necessarily a positive semi definite matrix, ok.

A very  useful  fact  is  any matrix  of  the  form A transpose  A is  always positive  semi

definite because you can write x transpose A transpose A x as A x transpose A x which is

nothing but the norm of A x or rather norm of A x square L 2 norm of A x square. 
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We  also  discuss  the  notion  of  determinant.  Determinants  are  numbers  which  are

calculated from a matrix for a 2 by 2 matrix of with entries a b c d the determinant value

is given by ad times dc, ad minus bc sorry. And for a 3 cross 3 matrix the determinant is

given by eh is computed recursively as a 11 times determinant of this sub matrix minus a

12 times determinant of the sub matrix formed by taking these two rows and plus a 13

times the determinant of this sub matrix. 

For higher order matrices the determinants can be defined similarly. And important thing

to note is that if a matrix A is singular or rank deficient if and only if its determinants is

0, if its determinants is not 0 then the matrix is invertible. 
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Next we discuss the important concept of eigenvalues and eigenvectors. So, the question

comes how can we characterize a set of matrices. One way to characterize the set of

matrices is to find solutions of equation of this form A x equals lambda x, for all x ok.

So, all alls all pairs of here note here that here lambda is a value and x is a vector. So,

lambda is a number and x is a vector, ok.

So, of course, if x is equal to 0 and lambda is equal to 0 this equation is trivially satisfied.

So, we are seeking solutions which are nonzero or where x is both x and lambda are

nonzero,. One way to solve this is to look for solutions to this linear system of equations

which is possible only if the determinant of this coefficient matrix is 0, ok.
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Using  this  concept  we  can  solve  the  eigenvalue  problem  for  example,  given  this

particular matrix we can compute or given this matrix a we can compute the matrix A

minus lambda I. And then we can compute the determinant of this matrix which in this

case turns out to be this particular  number. In general we will  have a polynomial  in

lambda we can solve this equal to 0 to get the get eh the degree of the polynomial times

values.  And  in  case  of  n  cross  n  matrix  this  turns  out  to  be  n  the  degree  of  this

polynomial or which is also called the characteristic polynomial turns out to be n.

By solving this we can get the lambda after which we can solve for x. 
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Now,  the  significance  of  eigenvalues  and  eigenvectors  is  that  the  eigenvalues  and

eigenvectors scale the the or or the eigenvectors are the directions in which any vector

when transform by this matrix A is just rescaled or scaled by the eigenvalue.  This is

because as you can see for the eigenvectors direction let say a your A x become n a

becomes nothing but a value lambda times x. 

This is the interpretation which is shown here. So, for example, in this case this matrix

scales  any  vector  in  this  direction,  as  in  this  direction  by  1  and  any  vector  in  this

direction by 2, ok. Hence this is a eigenvector and this is a another eigenvector and the

corresponding eigenvalue for this eigenvector is 2 whereas, the corresponding eigenvalue

for this eigenvector is 1. 
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Now, eigenvalues and eigenvectors have very interesting properties. So, the first property

is if lambda 1 till lambda n are distinct eigenvalues of a matrix then the corresponding

eigenvectors e 1 till e n are linearly independent. Next if e 1 is a eigenvector of a matrix

with  corresponding eigenvalue  n then  any nonzero  scalar  multiple  of  e  1  is  also  an

eigenvector with eigenvalue lambda 1. This is very clear because you can check that A of

let say alpha times x is also equals lambda of alpha times x. 

The  third  property  is  also  very  useful  any  real  symmetric  square  matrix  has  real

eigenvalue with orthogonal eigenvectors which can also be chosen to be orthonormal.

So, in other words your set if eigenvectors forms a orthonormal matrix and the set of

eigenvalues are real and symmetry. In fact, if you calculate all the eigenvectors you can

write the matrix A as a matrix of eigenvectors u times lambda times u transpose. So, this

is also called the eigenvalue decomposition of a matrix, and where u is the matrix of all

eigenvectors and lambda is diagonal matrix of all eigenvalues. 
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Extending this is another concept called the singular value decomposition. So, given any

matrix a which is an m cross n matrix it can be written as a product of 3 matrices U

which is an m cross m orthogonal matrix which or orthonormal matrix D which is an m

cross n diagonal matrix with. So, this is the matrix U which is an m cross m orthogonal

matrix or orthonormal matrix the matrix D is m cross n diagonal matrix. So, in this case

let say if m is greater than n. So, it will only have n many diagonal values rest all the

values will be 0 and v which is another n cross n orthonormal matrix.

This  decomposition  or  this  way  of  writing  a  matrix  A is  called  the  singular  value

decomposition. 
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The  singular  value  decomposition  has  some  very  in  important  properties,  so  very

important  and useful property. So, for example,  the rank of matrix  A is equal  to the

number  of  nonzero singular  values  of  the  matrix  A.  So,  every  matrix  may not  have

eigenvalue decomposition in real numbers but every matrix will have a singular value

decomposition and once you calculate the singular value decomposition, the number of

nonzero singular value determines the rank of a matrix. 

For a square matrix A you can see that it will have for a n cross n square matrix A it will

have sigma 1 till sigma n many singular values and it will be non singular it will be non

singular only if none of the singular values sigma 1 till sigma n is 0. In a other words the

matrix will be singular if at least one of the singular value sigma 1 till sigma n is 0.



(Refer Slide Time: 38:48)

So, with this we come to an end of this introduction to linear algebra. The reference for

this a good reference for this is the introduction to linear algebra book by Gilbert Strang

and another very nice reference is the Wikipedia.


