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Hello everyone. Welcome to the 3rd portion of 18th lecture on Scalable Data Science. I

am  Professor  Sourangshu  Bhattacharya  from  Computer  Science  and  Engineering

Department at IIT, Kharagpur and the topic of today's discussion is Hadoop Systems.

(Refer Slide Time: 00:39)

So, in that previous lecture,s we have discussed what is big data and hadoop, what is map

reduce. We have seen some examples of map reduce programs, we have seen  HDFS

commands  and  internals  and  we  have  seen  some  implementation  of  map  reduce

programs in java and other languages through streaming API.
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So,  in  this  lecture,  we  will  go  into  the  implementation  details  of  the  map  reduce

framework and specifically we will look at the implementation of short and shuffle. As

we discussed this is an important component and this is the main component which is

important for scalability of any map reduce program. We will see how the master or the

app master coordinates with the mapper and the reducer tasks, then we will see how fault

tolerance is implemented which is that if a particular mapper or a reducer tasks fails to

respond, how does the app master recover from the situation.

Then, we will see some we will see the notion of pipelining of map and reduced tasks

and finally, we will see some refinements which help speed up a map reduce program.
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So, we have seen this overall picture where basically a map reduce program consists of

multiple jobs and each job has an app master which co-ordinates between various map or

reduced tasks which are needed to be executed in order to complete this job.

(Refer Slide Time: 02:45)

Now, as you have seen; one of the, so as you have seen the the parallel picture for for a

map  reduce  tasks  is  that  several  mapper  tasks  get  executed  in  parallel  possibly  in

different  machines. Now, these  mapper  tasks  produce  some  intermediate  results,

intermediate records let us say this mapper tasks produce some intermediate record. So,



for  example,  in  case of  your  in  case of  your  word count  program,  this  intermediate

records where of this form and then, 1 and there where as many records of this form as

there are words in the whole file and now we are having a big data. So, possibly the

number of intermediate records is going to be very high.

So, now what do we do with this? What does the map reduce system have to do with this

intermediate records? So, they have to ensure that the intermediate records with the same

key in this case the same word. So, word is the key here. So, the intermediate records

with the same key reach the same reducer and this  operation is called the shuffle or

sometimes sort and shuffle operation, ok. So, the question is how can this operation be

executed in a scalable manner and the key to this lies in distributing the tasks in different

portion.

So, for example, if the, so the first thing that t is, so that is done on the mapper side is

what  is  called  the  sort  operation.  So,  sort  operation  sorts  each  record  into  different

buckets as you can see the buckets here. So, in some sense it creates the outputs for each

of the reducers, ok. So, how does we will  come to how the sort operation computes

which records will be put in the same bucket. So, in order to map records to buckets, the

mapper  function  may  use  something  like  a  hash  function  or  some  other  partition

function, ok.

So, this basically partitions the output mapper output records into different buckets based

on the mapper output key. So, this is the first step. The second step is that it should know

where the output of each bucket must go. So,  both the mapper and the reducer must

know. So, the reducer should know. So,  for example the first bucket should go to the

reducer  1 and the second bucket should go to the reducer 2 and this should happen for

each mapper.

Now, both the mapper and the reducer should use a consistent hash function,  the same

hash function  in order for this to happen because the reducer knows the records or the

keys that will come to it and hence, it can provide the hash to the mapper. Now, this

phase is called the copy phase. So, fast inside the mapper, there is the sort phase, then

there is a copy phase where the reducer asks for records in a particular bucket from each

of the mappers. So, this phase is called the copy phase.



Then, finally in the reducer there is a phase called the merge phase. So, the merge phase

basically merges the records which have come to a particular reducer into one single

sorted list. Now, here note that since individual lists retrieved from all the 3 mappers are

sorted,  this  merge  function  can  be  easily  executed.  So,  this  is  an  order  n  function.

Similarly the sort function is an order n function because all the mapper has to do is, it

has to compute the hash value for or the partitioner value for the mapper key and then,

put the record into different buckets, and the copy phase is a network heavy phase. So,

the copy phase is a network is in fact it is the only network operation that is done or the

large scale network operation that is done while executing a map reduce frame work, a

map reduce job, ok. So, we will see how to speed up this copy phase more.
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Now, note tha this is a zoomed in view on what happens in each mapper site.  So, as the

mapper function is executing, it is producing more and more mapper output records. So,

the  mapper  output  records  are  being  portioned and sorted  and it  is  cleared  that  this

mapper output record  I mean it may  so happen  that the all the mapper outputs record

from a given mapper will not fit into the mapper memory. So, these have to be written to

the disk. Now in which disk is this written, so we will come to that but once this is and

this happens in many many phases and then, there is a local merge on disk inside the

mapper task which is executed before the copy phase is executed, ok.



So,  basically  the  mapper  outputs  records  are  written  to  the  local  file  system by the

mapper.

Now, when the copy phase starts, the reducer calls a fetch on the mapper task to give it

the appropriate partition of the data. So, now it receives many such partitions which are

sorted in themselves. So, as they receive these sorted data, they merge and store it or the

reducer mergers and stores it into its local file system because again the reducer input

record need not be need not be there or it may be that it feels from the memory. So, this

merge also actually is executed on disk. However, the key thing here is that both on the

mapper side and on the reducer side, it is a one pass operation. So, one pass through the

data is able to achieve this whole either the partitioning of the data on the mapper side or

the merging of the data on the reducer side, this is very important for fast execution of

map reduce task.

(Refer Slide Time: 12:29)

So, as we have discussed the input and output and the final output are final output of the

reducer  task are  stored on the distributed file  system.  So, these are  fault  tolerant  by

design.

However the intermediate  results  are stored on the local  file  system of the map and

reduce workers and the output of one map reduce task is often an input to the other map

reduce task ok.
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Now, how does the master; so, as we have discussed the master node takes care of the

coordination between the different mapper and the reducer task ok. So, basically what

happens is for every task that the master node response the task is either in idle state or in

progress or completed state ok.  So, initially  all  tasks are idle and as more and more

workers become available and the tasks are ready to be executed their status gets the idle

task gets scheduled and they become in progressed tasks.

So, the other thing is  when a map task  completes  it  intimates  the master that  it  has

completed and it sends the master the location and the sizes of its intermediate files and

then the master gives this info to the reducer which then calls talks to the mapper tasks

for  a  fetch  from the  of  the  intermediate  result. And of  course,  the  master  pings  the

workers periodically to detect if there are any failures.
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Now, comes the important issue of fault tolerance because as we have seen in the big

data word, the fault tolerance is a very important requirement. So, there are roughly two

components. So, a fault tolerance is important. The first is HDFS and we have seen how

it achieves fault tolerance through replication. So, we can assume that whatever data is

stored on the HDFS is you know tolerant to failure.

Now, on the map reduce  front  while  a  job is  being  executed  one still  needs  a  fault

tolerance. So, the fault tolerance is achieved by restarting. So, the master restarts the map

and reduce tasks which have failed and it can write map output to the to the file system

to the distributed file system to minimize recomputation at certain times.
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So, we go into detail of a task failure. So, detail of failure the first, so as you have seen

there are 3 main components of any map reduce task, one is the tasks either the mapper

task  or  the  reducer  tasks  which  get  executed  on  the  nodes. So,  the  2nd  important

component is the application master which coordinates and controls between the task and

finally,  there  is  the  node manager  which  basically  coordinates  between  the  different

nodes of the cluster.

So, all these 3 can fail. So, if the task fails, it is known to the node manager and the app

master and both. So, the app master periodically pings the tasks and if they do not get the

response from the task, then they assume that the task has failed. Similarly, application

master sends heartbeat to the resource manager or the node manager. So, if the resource

manager fails, then the application master knows that or if the application master fails,

the resource manager knows that the application master has failed. And then, it restarts

the entire job, whereas if only tasks fail, only those tasks need to be restarted by the node

manager.
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So, now we see that how task failures are dealt with. So,  the first is what happens if a

map worker fails? So, map tasks completed or in progress at worker are reset to idol. So,

first the app master resets a failed map task to idol and then, the reduce workers are

notified and when the task is rescheduled, the reduce worker gets the input from this

rescheduled tasks.

If a reduce worker fails, then only in progress tasks are reset to idle, ok. Completed task

need not be reset  to idle.  So,  completed tasks are remained completed  and then, the

reduce start is simply restarted.

In the first case even the completed mapper tasks need to be restarted because the input

of that mapper tasks, task needs to be read by the reducer. In case the master fails as we

have discussed, the resource manager will abort the job and a new job will be started.
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So, that completes our discussion on how various aspects of the map reduce framework

is implemented. Now, we discussed some issues which need to resolved for every map

reduce program. So, the first issue is how many mapper and reducer jobs should we use.

Now, let  us say there are M mapper jobs and R reducers jobs. So,  typically in order to

take care of or take advantage of the maximum amount of parallelism, the number of

mapper tasks can be 1 per DFS chunk. So, in this case also called sometimes called splits

or just blocks. So, in DFS terminology, this will be called blocks and in the map reduce

terminology, this will be called splits. So, the number of map tasks typically can be the

same as the number of splits of data or number of blocks of data that are input to the

mapper. If there is a large number of mapper tasks, this  actually improves the overall

performance,  it  improve  the  load  balancing  because  then  each  mapper  tasks  is  not

working on a huge amount of data and that helps the scheduling of different tasks and

also, it speeds up the recovery from the worker failure. In fact, it is if the mapper task is

very small, it is unlikely that the failure will occur to a mapper task.

Now,  the other thing is the number of reducer tasks. So,  the number of reducer task

typically depends on the job. So, for example in the word count program, the number of

reducer task is upper bounded by the total number of words which are present. So,  in

general or typically the number of reducer tasks needs to be provided to a map reduce



job, otherwise it can be taken to be default  value something like which is set by the

cluster. So, something like 10 or 15 as depending on the number of nodes in the cluster.
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Now, we discuss the idea of a pipelining, ok. So, as we know that typically we will have

a large number of mapper tasks, ok. So, what the app master does is it  pipelines the

mapper task. So,  for example, you can see that there are  3 mapper task in this case  2

mapper tasks are scheduled on worker 1. So, the first mapper task ended in a very short

time and the second mapper task was scheduled on worker 2. So, the third mapper task

was again scheduled on worker1. So, it is very common to have a pipelined execution

that is one after the other execution of mapper task on the same workers, and then, one

can do pipeline shuffling for map execution for better dynamic load balancing and then,

one can,  so  once the and the reducer tasks can be scheduled on other machines which

read from different mapper tasks as I have seen here.

So, read 1 dot 1 is basically the read of mapper 1s output which starts when the mapper 1

ends, then read  1 dot  3 is the read from mapper  3s output to reducer  1s output which

starts when the mapper  3 ends and then, finally when the mapper  2 ends, then we can

execute read 2 dot 2.
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Now, many a times what happens is that out of a large number of mapper tasks or even

reducer task, sometimes a few of the tasks are very slow. So, these are not failures, but

these mapper tasks execute in a very slow manner. So, there comes a stage when most of

the mapper tasks are over and this could be because of many reasons like that particular

machine is having a hardware problem or bad disk or some operating system problem or

something like that,.

So  in this case, sometimes the overall job execution time becomes unnecessarily high

and the workers and for example, the reduced workers are also waiting for this map, slow

mappers to end, ok. So, while maybe other machines are free to run the job the map job

in a fast manner. So  in this case the solution becomes that near the end of the mapper

tasks what the master does is it schedules backup tasks for the in progress or for the in

progress map task or reduce tasks. So, and whichever so now for the same map task or

the reduce task, they are actually getting executed on two machines simultaneously. So,

this shortens the total job completion time.

Then, the protocol  is  that  whichever  of these competing backup tasks ends first, the

output of that backup task is taken and then, the other backup tasks for the same task are

ignored, ok. So, this is another improvement, ok.
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Another  improvement  is  that  is  one  of  combiner.  So,  as  we  have  seen  the  mapper

produces many outputs of the form key, value. Now, it may so happen that for the same

key, a single mapper produces many many records. So,  then in theory it is possible to

combine all these records into one record and thus, saving and thus reducing the number

of intermediate records by a lot. So, this is the task of the combiners. So, combiners are

can be thought of as something like mapper side reducer or reducers which work on the

mapper output records in the mapper task itself as to produce combine records.

Now, one has to be careful while using combiner. So, we have used the combiner in case

of the word count program that is because the. So, if we have let us say word W11 W11,

then we can combine this  to  form  W12 and give this  to  the output, give this  to  the

reducer which will again add. So, let us say reduce this came from mapper 1 mapper 2

gave W13 and so on and so forth. So, the reducer can combine this to get an output W15.

So, the count of the word W1 becomes 5. However, in certain mappers this may not be

the case. So,  for example,  sorry in certain reducers this may not be possible. So,  for

example,  if  your  reducer  is  not  commutative  or  associative, then  this  may  not  be

possible. So, one need to be careful while using the combiner. So, only if your reducer is

commutative and associative, can you use the combiner. So, an example of a reducer

where you cannot use combiners is for example if your reducer is computing an average

of the input numbers, so as you can see the average of averages is not the same as the



average of the original list, or the entire list of numbers. So, in that case the combiners

will not work, ok.
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Finally, as we have discussed that the bucketing in case of mappers is done by default

using the hash of the mapper output key; however you can use your custom partitioners

which are very important  sometimes if you want to take care of the skew  in  the key

distribution.  So,  in  that  case  instead  of  using  simple  hash  partitioner, you  can  use

something like a histogram partitioner where basically the hashing function is used in a

manner such that the approximate number of reducer input records for each part. So, the

the input is partitioned such that in addition to satisfying the fact that one key should go

to one reducer, the number of records in going to each reducer is made roughly equal.
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So, with this, so in conclusion we have seen some implementation details of map reduce

specifically  sort  and  shuffle, coordination  between  the  map  tasks, fault-tolerance

pipelining and some refinements.

So, this concludes our lecture on the Hadoop system and these are the references for this

lecture.

Thank you.


