
Scalable Data Science
Prof. Sourangshu Bhattacharya

Department of Computer Science and Engineering
Indian Institute of Technology, Kharagpur

Lecture – 18a
Hadoop System

Hello everyone. Welcome to the 18th lecture of the Scalable Data Science course on

NPTEL. I am Professor Sourangshu Bhattacharya from Computer Science and

Engineering department, IIT Kharagpur. Today's lecture is going to be on Hadoop

system. So, it will be the first lecture in a three part lecture on the Hadoop system.

(Refer Slide Time: 00:43)

So, just to recall, in the previous lecture, we have see what is big data and what is the

motivation for big data processing. We have seen the issues with big data. What are the

issues while you are trying to process big data? Then we have seen this system Hadoop

and we have seen the programming paradigm which is called the map reduce paradigm.

And we have seen some a few examples of map reduce programs and we have seen how

to express a particular task in the basic map reduce framework.

(Refer Slide Time: 01:29)

So, in this lecture, we will look at one of the components of Hadoop system, which is the

Hadoop distributed file system ok. So, first we will discuss what are the motivations

behind motivations and characteristics of this Hadoop distributed file system. Then we

will see some of the commands that you can use and basically get a feel of how to

interact with the Hadoop distributed file system. Then we will get into the system

architecture of HDFS and also we will see a few implementation issues and

implementation details of the HDFS ok.

(Refer Slide Time: 02:16)

So, just to recall, what is Hadoop, so Hadoop is a scalable fault-tolerant and distributed

system for data storage and processing. So, the as discussed earlier, the core Hadoop has

three very important components. The first is the Hadoop distributed file system

component, which is responsible for storing data in a distributed manner and also making

this data available.

The second component is the Hadoop YARN component, which is responsible for

scheduling jobs in the Hadoop cluster and also it is responsible for managing the

resources of the cluster. And finally, there is the Hadoop map reduce framework, which

we have distributed which we have discussed in the last class ok.

(Refer Slide Time: 03:12)

So, so what is HDFS or Hadoop distributed file system. So, HDFS is a distributed file

system with this characteristics that it is fault tolerant, scalable and very easy to expand

or extremely easy to expand ok. And HDFS is used as the primary distributed storage for

any Hadoop applications ok. So, when you are writing an Hadoop application by default,

you will be using HDFS as the main distributed storage for this applications.

Now, one of the main difference from HDFS to other distributed file systems is that it

provides interfaces for applications to move themselves closer to data. As we had

discussed earlier one of the main issues of big data processing is that we waste a lot of

time moving data between the different nodes that we are processing it in. So, paradigm

or idea is to instead of moving the data to where the computation is going on, you can

move the computation closer to data. And we will see how Hadoop distributed file

system helps in that.

Then Hadoop distributed file system is designed to just work that is you need not know

the internal functioning or how exactly it is designed. But, if you know the design and

internal functioning, then you can better utilise the Hadoop distributed file system and

also you can better debug the programs that use a Hadoop distributed file system.

(Refer Slide Time: 05:10)

So, what are the design assumptions behind the Hadoop distributed file system. So, the

first design assumption is that hardware failure is a norm. So, basically all the data that

you store in Hadoop distributed file system has to be tolerant to hardware failure that is

at any point in time particular disc that you write the data in may fail and hence it should

have a backup of the data. So, this is the first assumption.

The second design assumption is streaming data access. So, data will be access in a

streaming manner one after the other one record after the other. So, this is true for also

other standard file systems, but this is especially true for HDFS, since the speed of

reading the data is of essential. So, this is one of the assumptions.

The other assumption is that is the right ones and read many times assumption. So, here

the main idea is that since you are writing such big data files, it is expected that you will

write this big data ones and then use it many times. Otherwise, you have not really you

know taken a lot of advantage of this big data, because you have spent so much effort

gathering and then writing this big data. It is expected that once you write this, you will

read it many types and use it many times.

The next assumption is that it is a high throughput, not low latency system. So, what this

means is that if you if you try to access randomly data or if you try if your application is

designed in such a manner that you are making many random access to different files or

even different parts of the same file, then your application may run slower, as opposed to

if you make a high throughput read of the whole data. And then it is designed for large

data set, which is obviously the case.

So, keeping these design assumptions in mind. HDFS performs best with a modest

number of large files. It is optimised for streaming reads as we discussed. And another

important characteristic of HDFS is that it does not try to implement the low level file

system, but it is a layer on top of the existing file system, which is provided by the

operating system ok.

(Refer Slide Time: 08:23)

So, what are the details? So, the first thing is that like any other file system even in

Hadoop distributed file system, the data is organized into files and directories. And just

as you as you work with any a unique distributed files, you can also work with files and

directories in the Hadoop distributed file systems.

The now, also similar to standard file systems; files are divided into blocks, but now

unlike standard file systems, these blocks are distributed to different nodes in a Hadoop

cluster. So, these blocks are data that is sitting on the native file system of different nodes

of the Hadoop cluster.

At the time of reading, the block placement is known, which means that you know the

node on which a particular block is placed and hence you can so you can schedule your

jobs or your map reduce tasks in such a manner that the computation goes to the data that

is your application or the client that is reading the data is close to the node, where the

data is being read.

Now, an important concept in Hadoop distributed file system is the replication concept

ok. So, every or yeah every block is replicated a certain number of times. Now, this

replication is useful for first of all speed of computation, because for example, if a

particular block is placed is replicated across three different servers, we can schedule the

computation close to one of those servers. And then the chance of finding a free let us

say compute slot in one of the three servers is higher than if the data was not replicated,

it was only on one server, then the chance of finding a free compute slot is lower.

The second important gain of replication is the fault tolerance that is if one of the server

goes down, then the you can run the job on the other server without losing the whole job

ok. And the third is it can be used for self healing that is once a particular node goes

down ok, so then since the data is already replicated on other nodes, the those nodes can

again heal that heal the file system. In the sense that they can replicate the data onto a

fourth node. And hence, even though one node is down, the total number of replicated

factors is still three.

(Refer Slide Time: 12:16)

So, there are two main components of the HDFS file system ok. So, the first component

and these are both these are software components, which are running on the servers. So,

the first software component is the name node component. So, this is the heart of an

HDFS file system, it maintains and manages all the file system metadata. So, we will

look at what metadata it manages, but mainly for example, for a given file, it stores

which blocks constitute these files and on which nodes these blocks are stored etcetera.

The second important component is the data node component ok. So, this is where HDFS

stores the actual data and almost you can think that any Hadoop cluster almost all the

nodes will work as a datanode, whereas there will be one or two name nodes. Typically,

the there will be only one primary namenode and then maybe a few secondary name

nodes, which become useful, when the if the primary name node goes down.

(Refer Slide Time: 13:39)

So, this is an example of a HDFS architecture you can see that. So, as you can see, so

this is an example of HDFS URL, so slash user slash pkothuri slash data and then there

will be part file. So, slash user slash pkothuri slash data is the location and then under

this location there are this part files, which are stored. So, this is a very typical structure

of a HDFS file system. So, there is the first three are the directories. So, there is the user

directory, under which there is this directory and under which there is this directory and

so on and so forth.

So, as you can see the components here are. So, there is the name node which is storing

all this meta data, so which is storing the filename and it is storing the block id’s etcetera.

Now, this is the important is the most important thing, it is called the HDFS client. So,

the HDFS client is the software that is programmed by you. So, for example, HDFS

client could run inside a mapper job that the you as a programmer have defined or it

could it could also one could also used inside a normal program, not a map reduce

program per say but inside a normal program and HDFS client.

Now, the HDFS client should typically interact first with the name node to get the details

of the data node, where the data is stored or where the blocks is stored. And then it would

also interact with these data nodes to directly get the data. So and these data nodes are as

you can see here running on almost all the machines in the Hadoop cluster, which are

connected to their local disks and these are stores for the block. And the data nodes and

the name node, they interact with each other to provide various functionalities like

replication, balancing, heartbeat etcetera. So, they basically perform all the function ok.

(Refer Slide Time: 16:45)

So, this is just a view of few of the commands that you can use in HDFS. So, for

example, you could use the list command just as in as a Unix command, so you can write

hdfs space dfs minus ls and this would list the contents of a current directory. So,

whenever you are you are logged into a Hadoop cluster as a Hadoop user, you will have

a current directory. So, Hadoop will maintain a current directory. And then you can you

can use this command to view the contents.Similarly, you can use other commands to

view for example, contents of root directory the second command or recursively view the

contents of a particular directory.

Now, similarly, so just so you can use the du command to view the disk space occupied

by various directories. So, for example, if you give a subdirectory, you could get that the

you could it would list all the sub files in this directory and then it would list the space

occupied by those files or directories in this directory, or it could give you just a

summary, if you use the minus s flag or and it could give in a human readable format

also with just the minus h flag. So, commands are pretty much similar to a UNIX

command, so you can use it as if you are a UNIX file system.

(Refer Slide Time: 18:25)

Similarly, you can use for example, minus mkdir which is similar to the make directory

or mkdir command in UNIX. And then, so one of the important tasks is to copy data

from the local disk or So, you are logged in to a Hadoop server with the with an account

to one of the machines ok and in the local file system of this machine, since you have an

account, you may have some data.

So, let us say this data is called this tutorials data geneva dot csv, then you can use the

copy from local command ok and you can give the name of the directory in which you

want to copy. So, this directory should exist. So, you have already created this directory

and now you can copy the data there. And similarly, once you are done with all the

processing, you may want to copy the data from the distributed file system back to the

local file system. And for this, you can use this copy to local command.

(Refer Slide Time: 20:01)

Similarly, you can get you can get so access controls. So, just like a Unix file system, the

Hadoop file system also supports access control, which is you know the owner of a file

and then what permissions to the owner has, what permissions to the group has and what

permissions to other has. So, it has exactly the same access control model as the UNIX.

Similarly, you can get some statistics like for a particular file, you can get what is the

replication factor, what is the what is the you know creation time, modification time, last

access time and so on, using this minus stat command, so again these are very useful

commands.

And finally, there are two commands one is this minus put and the other one is minus cat.

These commands are useful for you know streaming data. So, minus put allows you to

stream data from the std in to directly to a distributed file system without writing it to a

local file system.

So, this is very important, because many times you have a very big data, which is

generated from some other application. Maybe you are having you have the data in a zip

format or some such format and you want to directly put it to HDFS without putting it to

the local file system, because your local file system does not have enough space, then

you can use these kind of commands.

And cat is the opposite of that, cat will allow you to print or will allow you to show file

in a Hadoop distributed file system on to the std out or on to your screen.

(Refer Slide Time: 22:22)

So, just to recall, as we have discussed the goals of HDFS are so, in order to store very

large distributed file something like let us say 10,000 nodes, 100 million files and 10

petabytes of data. So, these kind of statistics you may So, it is not useful to use HDFS for

storing a very small amount of data ok.

Moreover, it assumes that you are running this as Hadoop system on commodity

hardware. So, hardware failure is the norm and hence files have to be replicated. And the

file system is designed in such a manner that it detects failures and recovers from them

ok.

Also it is optimized for batch processing that is So, the data locations are exposed, so

that computation can move to where the data resides. And when that happens, it provides

a very high aggregate bandwidth. So, basically what this means is that when you start a

computation your results may start coming slower. So, it is not a low latency data

processing, but it is a high throughput that is a large amount of data will be processed in

a short amount of time.

And it another design which is also common to Hadoop is that it runs in user space and

on heterogeneous operating system. So, you are not a really bound to the system, which

on which the whole HDFS system is running.

(Refer Slide Time: 24:30)

And as we have discussed, so you have only single namespace for the entire cluster. So,

everything is under the root directory, which is slash. And you have different

subdirectories models just like UNIX file system. And we have also seen that you have

write once and read many times access model.

Now, the way this works is that so, mostly you can read you can you can do a contiguous

read very fast, you can also do a seek seeking read, which is which is which is slightly

slower. And you can you cannot modify an existing file, you can only append to existing

files. We will see why this is the case with the architecture. So, files are typically broken

up into blocks of big size. So, typically 128 MB is the block size, which is much higher

than the standard block size for file systems. And each block is replicated on multiple

data nodes.

Now, your HDFS client is directly interacts with the data nodes to access the data. So,

this helps in avoiding the bottle neck at the name node level, where only the meta data is

stored. So,. So, the metadata is typically much smaller than your entire data, so that there

is no single bottleneck. The client has to be intelligent enough to read the locations of the

files from the name node and then directly interact with the data node in order to access

those data ok.

(Refer Slide Time: 26:51)

So, as discussed already metadata for the; so, the name node stores all the metadata. So,

typically it will store a list of files ok. And then it will store for each file a list of blocks.

And then it will also store for each block, the list of data nodes on which these blocks is

blocks are stored. So, this is the hierarchy in which it will store attributes. Moreover, for

each file, it will store attribute such as creation time, replication factor etcetera. Now, this

entire metadata will be stored in the memory for the name node. So, typically the server

which will host name node is expected to have a high memory ok. And this is accessed

by all the applications in the entire cluster ok.

(Refer Slide Time: 28:02)

And the data node acts as a block server. So, typically a data node would not only store

the blocks in its in its local file system ok, but it will also act as a node for processing

data in the map reduce framework, so that you can have data local computation.

So, so it will store the block data in the local file system. And then it will store some

metadata for the block like the check, sum and etcetera. And then as a general rule, it

serves the data to the and the meta-data to the clients, which connect to them. And it will

also periodically interact with the name node to send the block report to the name node.

And the third functionality of the data node is that it facilitates pipelining, which we will

see in a minute.

(Refer Slide Time: 29:06)

So, this architecture we have already seen. So, just to make the point here that so,

whenever a client whenever a client accesses a so whenever the client accesses a name

node and gets the name node gets the metadata for a particular file like home, food, data.

And then let us say it is there on the third server. Then it will access that particular data

node directly and gets the data.

(Refer Slide Time: 29:53)

Now, we discuss what how does HDFS read client function. So, a HDFS read client first

gets a so, it has to read a particular file. So, it first calls the open function ok, which

accesses the distributed file system and then it access the name node. And it basically

results in getting the block locations for this particular file.

So and this block location is now transferred to this HDFS client, which creates this FS

input data stream object, where all this block locations are stored. And this object now

initiates the reads from this block. So, this object will initiate the reads one by one from

the different data nodes and the data nodes will directly supply the data to the read to the

client in this machine. And then once it is done with reading all the blocks, it will just

issue a close message, which will result in the completion of the read activity.

(Refer Slide Time: 31:23)

Now, this is simple. On the other hand, the write operation is slightly more complicated;

the reason the write operation is more complicated is because when you So, first when

you write a new file, so you can either append to an existing file or you can write to a to

a new file. So, you call the create function to the name node, the create function then

creates some creates some blocks on some data nodes and returns the list of blocks to the

FS data output stream object, which is created on the client side.

Then the client writes directly to the data node. So, this gives the data nodes, this gives

the address of the data node to which actually three data node, so whatever is the

replication factor that many data nodes to the client. So, the client issues a write request

to the first data node that it receives. And then that particular data node actually takes

care. So, the data nodes they among themselves take care of the replication ok.

So, for example, the first data nodes, now issues write to the second data node. So, the

client writes to the first data node, the first data node writes to the second data nodes and

the second data node writes to the third data node, if the replication factor is three. And

then the acknowledgement comes back from the third to the second, then second to the

first, which is finally transferred back to the client. At that point in time, this particular

write request is complete.

So, you see the a particular write request takes a lot of time to execute. So, what the file

system does or what the write line does rather is it is it issues, it breaks down the data

into a different blocks and then it issues the write request to the blocks in parallel and

then it the data comes back. And once all the write requests are complete, the client can

issue a close request on the file and then the whole write operation is complete.

(Refer Slide Time: 34:12)

Now, here one important question is how to place the blocks. So, multiple strategies can

be used. So, practitioners by trial and error arrived at the following strategies. So, the

first, so wherever the data node client is the first write or the first replica happens on a

local node, if it is possible ok. So, the first replica of a block is written on to a local node,

if possible.

The second replica is happens on a remote rack ok. So, on a; so, typically as we have

discussed, the servers are arranged in racks. So, the second replica happens on a rack

different from the node of the first rack. And the third replica happens on the same rack

as the second replica.

So, so this is because then there is a rack local write from second to third, but also it

ensures that in case of failure of an entire rack, you have the data on at least two racks.

So, this is the write placement this is the strategy when you write a data on to a HDFS

rack. When you read data, you are your read is typically from the nearest. So, if it tries to

do a rack local read and if not possible, it tries to read from the nearest rack.

(Refer Slide Time: 36:20)

So, the single point of failure for the HDFS file system is the name node ok. So, if the

name node fails, then so, if any of the data node fails, then so the whole file system or

the whole HDFS file system is immune to that, because there are many data nodes,

which are there. And any particular block is actually written on to something like free

data nodes or whatever is the replication factor for the HDFS. Typically, the replication

factor is three.

So, it is unless all three data nodes on which a particular block is existing fail at the same

time, which is highly unlikely one can always access a block. But, if the name node fails,

then it is a single point of failure. So, the only way at that point in time is to actually

switch to a secondary name node yeah. So, ok.

(Refer Slide Time: 37:37)

And we have already discussed data pipelining.

(Refer Slide Time: 37:44)

So, to conclude, today we have discussed the structure of HDFS. And we have discussed

the shell commands and we have also discussed the architecture of how the file what are

the components and how each of the components interact with each other at the time of

read and write. And we have also discussed some of the internal algorithms like the right

pipelining algorithm.

(Refer Slide Time: 38:16)

So, the references for this is Hadoop The definitive Guide for by Tom White and also the

Mining of Massive Datasets by Jure Leskovec.

Thank you.

