
Scalable Data Science
Prof. Sourangshu Bhattacharya

Department of Computer Science and Engineering
Indian Institute of Technology, Kharagpur

Lecture -26
Map Reduce and Hadoop

Hello, welcome to NPTEL course on Scalable Data Science. Today, we are going to

discuss Map Reduce and Hadoop. I am Sourangshu Bhattacharya, department of

Computer Science and Engineering, IIT Kharagpur.

(Refer Slide Time: 00:34).

So, in this lecture, we will cover the idea of Big Data. What is big data, , what are the

issues with big data; then, we will discuss what is the, what is Hadoop, and we will also

discuss, what is Map Reduce, and then we will see an example-Map Reduce Program

and how it functions .

(Refer Slide Time: 01:01).

So, consider this, example of Google. So, Google has roughly 20 billion web pages to

index. Let us say, it might be more, but let us assume that it has 20 billion web pages to

index. Each web page is of 20 kilo bytes size. So, it has to index more than 400 tera

bytes of data.

Now, consider this, one computer if you have one hard disc in a computer, it reads at the

rate of 30-35, 35 megabytes per second. So, this means that, in order to index 20 billion

web pages on one computer, you would take roughly 4 months. In 4 months, many of the

web pages would have changed. So, you again have to re index them. So, this solution is

not feasible.

So what is, what do you do? So, what Google does is it uses many-many hard drives on

many-many computers to store the data? But it takes so, it, but it takes more time or

more resources to do something useful with the data.

So, what is the solution? So, you know that, today, a standard architecture, for solving

that kind of problems is a Cluster of commodity machines. Instead of, having one very

large computer, you have a Cluster of community computers, and these are connected

over, let us say, a commodity network, something like an Ethernet network.

(Refer Slide Time: 03:37).

So, instead of, using one large computer, we use many small computers so, to solve this

problem. Now, what is the architecture for this? The architecture for this is something

like this; you have typically 1 Gbps switches. So, you have racks where racks are kept.

So, these are. So, this is one rack typically in one rack, you can have between 16-64

nodes.

These racks are connected by a first level switch. So, each of the computers in a rack are

connected and each rack is connected by a first level switch and these switches are

further connected by a second level switch. So, this is the cluster architecture that is

typically followed in, in many of the data, data centres that one uses.

(Refer Slide Time: 04:36).

So, now this way of computing over very large data, using commodity hardware, throws

a certain challenge. So, what is the challenge? The first challenge is, how do you

distribute the computation; says the how do in which machine? So, if you have thousands

of servers; in which machine which indexing should go on?

So, this is the first challenge, the second challenge is, how can you easily write such

distributed program, because writing distributed programs can take a lot of time and may

require highly expert programmers., and the third challenge is, that when you have many

many servers, the some of the servers can fail. So, if we do some back of the pump

calculation.

So, let us say, we assume that one server can stay up for 3 years. So, after 3 years, it will

fail. As in one way or the other it will fail in roughly 1000 days which is 3 years.

So, if you have 1000 servers, on an average you can expect, that one server will fail

every day. So, for example, in case of Google, people expect that they had about 1M

machines. So, that means, about 1000 machine fail every day. So, whatever program one

writes, whatever distributed program one writes, has to be tolerant to this failure. So,

with these ideas in mind, so or these challenges in mind, so, what are the challenges? Just

to reiterate the challenges.

(Refer Slide Time: 06:43).

The first challenge is the scalability challenge. So, the processing should scale with the

increase, in the data and this scalability in order to solve this scalability challenge we

started using Clusters of commodity machines. That induced a second challenge which is

the fault tolerance challenge. So, the program that you write should function even in

presence of hardware failure.

The third challenge is the cost effectiveness. So, it should be able to run on commodity

hardware or you know like desktop computers and things like this. The fourth challenge

is ease of use. So, the programs writing program should not take many many days or

very expert knowledge. So, the program should be easily writable.

And last is, there should be flexibility. So, for example, these, one should be able to

process, unstructured data like web pages or you know, news articles, take things like

this using this framework.

(Refer Slide Time: 08:30).

So, in order to address all these challenges the map reduce framework for computing

with big data was born. So, the first issue that this Map Reduce framework faced was

that, if we have a really large amount of data, copying this large amount of data over

network, will take a lot of time and a lot of bandwidth.

So, what is the solution to that; the solution is instead of, copying the data over the

network, you bring the computation close to the data, which is on whichever machine the

data, a particular portion of the data is stored, you could do the computation for that

particular portion of the data on that machine, and you store files in multiple places,.

So, you make a copy of the files or the data which is stored in these files, in multiple

machines. This helps both improve reliability and also the paradigm of computing

something locally. So, there is a high chance, that you can get a local copy of the data, on

a particular machine.

So, map reduce is uses the following way to address these problems. So, the first is the

storage infrastructure which is typically a distributed file system. So, in case of Google

internally Google uses something, called the Google file system. The open source

framework, Hadoop uses Hadoop distributed file system, which we will discuss in detail

in the next lecture. So, for storage you use a distributed file system, for programming

you use what is called the map reduce programming paradigm, . We will discuss this

next.

(Refer Slide Time: 10:50).

So then second problem is what, if nodes fail?. So, if nodes fail the data stored on these

nodes, may be lost, or. So, the challenge is how to store the data persistently even though

certain nodes fail, and the answer is to have a distributed file system which provides

global namespace, but it provides ability to copy. So, it stores data redundantly, in

multiple machines and it provides ability to copy this data from one machine to another

seamlessly additionally

So, the typical usage pattern, for this kind of a distributed file system, is that you have

huge files. So, and data is rarely updated, but data is very frequently read and very

frequently appended or new data new records of data are added very very frequently.

(Refer Slide Time: 12:35).

So, what is Hadoop? So, Hadoop is a scalable, fault tolerant, distributed system for

processing storage and processing of big data. So, it addresses all the challenges of big

data that we discussed earlier.

So, Core Hadoop has the following three components. The first component is called the

Hadoop distributed file system which allows you to store the data in a distributed manner

and over a Cluster of commodity servers and it also satisfies all the properties of fault

tolerance and redundancy.

Next component is the Hadoop yarn which is the job scheduler and the Cluster resource

manager. So, this schedules the map reduce jobs on appropriate computers and it also

keep tracks of where a particular job is based scheduled, and where which jobs are

running.

And finally, the third component is the Hadoop Map Reduce component which is a

framework for distributed data processing which we will discuss next and Hadoop is an

open source community project.

(Refer Slide Time: 14:22).

So, next is, what is map reduce; so, map reduce is a programming paradigm. It is a

programming paradigm, which is used for distributing a task across multiple servers. It

was proposed by Dean and Ghemawat it 2004. So, it consists of two developer created

phases the map and the reduce

In between the map and the reduce phase, there is a shuffle and a sort phase. So, the user,

given a problem, the user is responsible for casting the problem into this map reduce

framework. So, this is where the map reduce programming paradigm comes into picture

which, we will learn in this lecture. And also note that, typically multiple map reduce

jobs can be chained or scheduled to execute one after the other.

(Refer Slide Time: 15:43).

So, let us consider a huge text document. So, in order to describe the map reduce

programming model; let us consider, a huge text document and your task is to count the

number of times each distinct word appears in the file. So, for example, an example

application could be that you analyse web server logs to find popular URLs.

(Refer Slide Time: 16:16).

 So, you can have two situations. The first situation is that, even though the file is too

large, you store, you can store all the words in memory. So, you store the count

corresponding to every word in memory and you update these counts, you make one pass

through the file and you update these counts in memory.

So, this, so this creates many problems. So, typically it is not possible to store all the

words for example, by words in the previous application it could be all the URL. So, you

may not be able to store all the URLs in the memory of a single computer. Another

problem is, if you are using multiple computers how do you ensure that the counts are

consistent across multiple computers.

So, the second approach is the following approach that you count for each word, you

create a stream of words, and then you sort this stream using the uniq -c sort commands

and then you count the number of uniq -c words in this stream. So, this approach is more

similar to the map reduce approach of doing things.

(Refer Slide Time: 18:04).

So, what is the idea; the idea is that you have two phases. One is the Map phase and one

is the Reduced phase. So, in the map phase you extract something that you care about.

So, in this case you as you read the document you extract the words and the counts of

those words, and in the reduce phase you aggregate or summarise. So, the reduce phase,

assume for example, that in this case, all the words appear together. So, that you can

easily aggregate or summarise.

So, this task of making all the words together is handled by the sort or the shuffle phase.

Now, this is just one problem. So, the outline remains the same, but you can change it to

fit it to many problems.

(Refer Slide Time: 19:07).

So, this is the functioning of the map reduce framework . So, as you can see. So, on the

left here, you have many intermediate values. So, you have many intermediate values

here which are the keys and the values and what the group by key or the sort and

Shupple shuffle phase does, is it brings together, records all records with the same key.

So, here you can see all the records with the same key are together and the values are, for

each of those records are stored in a list and then finally, the reduce phase generates, one

value for each of the keys or more formally for any map reduce program, there are two

methods which the programmer must specify.

(Refer Slide Time: 20:10).

The first is the mapper method. The input to which is a key value pair and the output is a

list of key value pairs. This mapper output is sorted and shuffled and fit into the reducer

input. So, the reducer input, is again a key and a list of values pair. This is in map reduce.

So, as you get for each key a list of values you can; so, the reducer function aggregates

the list of values and produces a new key and a value. So, this is the, example of word

count or this is showing the example a running of word count for using the map reduce.

So, here the mapper function, takes the record or takes the document.

(Refer Slide Time: 21:10).

The documents it is typically broken down into records. So, for example, here you can

see that, this is the first record, this is the second record, this is the third record, and this

is the fourth record for this particular application. It does not matter, how the document

is broken down so, long as, a word appears in one document. Sometimes the documents

are broken down, using new line or something like that.

So, then the mapper function produces, the key value pair, for each document, but note

that the keys can appear in any order. For example, the comma 1, crew comma 1 is

coming from the first record and then there is a, the in the second record, somewhere. So,

it is appearing at a later point it.

Now, the shuffle or the group by key phase brings, together all the crew brings together

all the crew, and all the words, all the occurrences of those words together. So, then the

reducer input record, gets this as input and it computes that it aggregates the two 1s in

the crew to come up with this 2.

(Refer Slide Time: 23:19).

So, this is the map reduce program. So, once you get the document, the mapper record is

emit w comma 1 and for each word in the, in the current value which contains the actual

text, for the mapper record and the key is simply ignored. Key is something like a

document name.

For, the reducer record, the key is a word which is very important and the value is the

count over the, rather the value is a list of counts of this particular words. And in this

case, all you have to do is iterate over all the values which come with this particular key

and you just have to add them to the result and then you emit the sum. So, this is your

word count program in map reduce.

(Refer Slide Time: 24:30).

So, just to summarise, the user writes the mapper and the reducer method. The input is

typically, input to a mapper is typically unstructured record for example, a row of

RDBMS table or a line of text file etcetera. Output is a set of records of form key value

pair where both key and value can be anything. And so, for example, in case of word

count the output record was word comma count.

(Refer Slide Time: 25:24)

The shuffle phase ensures that the mapper output records with the same key value goes

to the same reducer or goes into the same reducer record. And sort ensures that, the

records which with the same key arrive together.

(Refer Slide Time: 25:52).

In the reducer again, the reducer is a user defined function which, which processes the

mapper output records which are output by the mapper. So, the input is of the form key

comma list of values and all records having the same key arrive together and then output

contains the key and the aggregated value of each record.

(Refer Slide Time: 26:32).

So, this is the parallel picture of map reduce. As you can see, since, there are many many

servers. So, many many mapper programs will be executing at the same time, and each

will generate many many records with different keys. So, Shuffle and Sort makes sure

that a particular record with a key goes to the corresponding reducer.

(Refer Slide Time: 27:13).

And this is the word count example for another case.

(Refer Slide Time: 27:16).

Another example application is where let us say, you have a huge file with maximum and

minimum temperature for every weather station and every date as record. So, your input

records are of the form. So, your input records here, are of the form temperature and date

and maybe other attributes such as weather station etcetera. And your task is to find the

maximum and minimum temperature, for the last century.

So, what should the mapper task be? So, the mapper task should take this record, as the

input and output the year and the temperature for the particular year as the mapper

outputs. The mapper input record is the, is the weather station data where you have

temperature and the whole lot of other attributes.

The mapper output record only outputs the year which is the year. So, which is the key or

the mapper output key and the temperature for that particular year. So, for every year you

will have multiple mapper output records.

Now, Sort and Shuffle sort sit into records of this form where for every year you have a

list of temperature values and each of these sorted records go to a reducer. The reducer

takes in this record and for each year computes the maximum and the minimum recorded

in that particular year which is the output. So, this is another example where you can find

in a large data set, the maximum and minimum temperatures using the map reduce

framework.

(Refer Slide Time: 30:21).

So, in a nutshell, what does Hadoop map reduces provide? So, Hadoop map reduces

provides automatic parallelization and distribution of the program that you have to write.

So, you do not have to write either code for parallelization or distribution of the program.

So, you do not have to write how each distributed component is calculated, how many

mapper jobs should be spawned, how many reducer jobs should be spawned, all these

things are taken care of by the Hadoop map reduce framework.

It provides fault tolerance. So, for example, if you write a program for computing let us

say word count program and it is run on a thousand computers. And now if one of those

computers fails, it will automatically make sure that the other 999 computers finish

executing the whole task; even though or rather the whole job even though one of the

subtasks has failed; because that particular computer has failed.

It provides methods for interfacing with the HDFS. So, reading the large amount of data

from Hadoop distributed file system and collocation of computation. So, the fact, that the

computation should be scheduled on a node, where the HDFS is storing a particular piece

of data. That facility is also taken care of by Hadoop map reduce framework and it also

stores the output in an appropriate location.

Additionally, it provides status monitoring status and monitoring tool. So, if a number of

jobs are submitted to a Hadoop map reduce Cluster it provides tools to see what is the

status of a particular job, how many mapper tasks are running, how many reducer tasks

are running and what is the status of each mapper task and reducer task .

It provides an API in java and also in many other languages now, and also it provides AP,

API for through Hadoop streaming for using many many other languages. So, you can

provide your mapper or reducer function in, for example, Python or, Pearl or any other

language.

(Refer Slide Time: 33:25).

So, part of this lecture was from this book which is also available online on mining of

massive datasets and another very nice reference is Hadoop: The Definitive Guide .

Thank you.

