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Welcome to the course on Scalable Data Science, my name is Anirban and I am from IIT

Gandhinagar. So, today’s lecture is going to be on Feacture Hashing.

(Refer Slide Time: 00:27)

So, until now you have studied applications of both sampling and random projections to

a bunch of optimization problems relating to linear algebra right. We have we first saw

applications of random projections to this low rank approximation, here of at least two

different forms, to matrix multiplication, to L 2 regression. And, then we and in the last

lecture you also saw how we can turn some of these how we can also imply sampling to

solve some of these problems right using the leverage score sampling techniques.

So, all of a lot of these one big thing that is missing, while a lot of these is relevant in a

unsupervised machine learning right, the supervised is a slightly different ballgame ok.

And they in this lecture well explore how random projection and related techniques can

also  be  useful  in  supervised  machine  learning  right.  The  basic  techniques  and  the

intuition  is  going  to  be  the  same right,  the  problem is  going  to  come from that  of



supervised machine learning. Therefore, and what we will discuss at the end is what a

new kind of guarantees can be should we hope to have in this case.

(Refer Slide Time: 01:43)

So, let me give the outline first, there are going to be two different use cases both of them

are relating to text. In one use case, what well consider is that there is going to be a very

large  feature  space  right  and we will  point  out  why having a  large  feature  space  is

actually useful. Essentially it is going to be to capture very long range correlations in the

in  my document  in  a  specific  document.  And,  we will  have  to  come up with  some

technique to control this the size of this feature space right and I mean the large, having a

large feature space is actually useful for classification. However, I mean in a is actually

useful  in  improving  classification  accuracy,  however,  it  is  computationally  very

inefficient. 

Therefore, what we will do is that first we will pose the problem as having a large feature

space,  and then  we will  use random projection  to  cut  down the feature  space  while

preserving  the  benefits,  some  of  the  benefits  that  we  had  brought  in  because  we

introduced the large feature space right. So, in this way we will sort of I mean do both

right; a similar story is going to come out in mails file classification. Here what we are

going to see is that we have to introduce a large feature space in order I mean as a cheap

way of trying to give personalized classifiers to each individual user.



And again this is going to blow up the entire  dental  problem size by a lot  right and

therefore, we are going to use random projection related technique to cut it down right.

And what we will see in that in both these in both these settings are very specific type of

random projection is going to be more useful to us.

(Refer Slide Time: 03:31)

So, let me outline the two use cases first. So, in the text classification setting right let us

think about what kind of classifiers work best right; while nowadays you see a lot of this

non-linear non convex classifiers I mean the deep neural nets that give excellent results,

in speech and vision right. There is a typo out here and these are good because they have

very high accuracy, they are also reasonably fast at test time. However, during training

time they can be terribly slow right and often require a lot of thinking a lot of domain

expertise in order to ensure that you do not get stuck in bad local minima right there are

lot of heuristics, that you need to know about. 

Furthermore it is not clear that a lot of these I mean these non-convex classifiers are very

useful when the data is sparse and high dimensional right i. e. when the data comes from

text right. Although there are techniques I like what to vet that are changing this that are

creating dense representations of word doc of sort of very sparse documents and words

and then and thereby using it. However, it is still not clear that they are that they can beat

the I mean very practical systems that are robust right, that are I mean that are formed by

much simpler means ok.



(Refer Slide Time: 04:58)

So, in practice what is what is still very useful are what I call count based features right.

And these slides are actually from a talk by John Langford ok. So, in a sense what I

mean is that I mean if you remember the normalized or rather the back of words model

of a document right in which we essentially represent a document as a set of its tokens

along with the counts, that are associated with these tokens. And, these counts could

represent some normalized frequency in the document frequency things like this. 

We could come up with the normalization with the term count in very fancy ways right,

we could take this pack of words model and we could augment it quite a bit right. So, the

benefit of the simple bag of words model is that, it is really easy to train at least on single

machine ok. And paralysation is a different ball game altogether it is also clear that its

really fast at this time right because, all you need to do is essentially compute some

statistics from this from the query document and then use that for prediction right.

And it turns out that this still works surprisingly well for text classification right, which

is which still forms a large part of the machine learning and practical machine learning

tasks that we do right. And a common practice I mean if you want to augment the naive

bag of if you think that a bag of words model itself is it is knife to start with, a common

practice to augment it is to take various combinations of n grams and skip grams right.

And the intuition is that, that if I take a I mean if I take bigrams trigrams etcetera and

scale  grams well  be  able  to  capture  high  level  correlations.  But  still  they  are  fairly



efficient to calculate and therefore, we are capturing the high level correlations, while

being while retaining the efficiency of feature construction ok.

(Refer Slide Time: 06:53)

Let me give an example of bigrams and n grams. So, for instance here is the sentence

that we have the rain in Spain falls mainly on the plain ok. So, the two grams in this and

this in so, of course, the unigrams in this in this particular document, would be would be

the individual words the rain in Spain falls mainly in the plain right. The 2 grams would

be the rain raining in Spain Spain falls etcetera. And what you can easily see is that by

looking at the this sort of unigrams you are getting a better idea of what the document is

about. 

So, that the skip grams that we that I just mentioned has various has different variants to

it right. Here is one particular variant there is known as a 1 skip 2 gram right, that is you

take  bigrams right  where  between 2 bigrams that  you take  you just  skip one of  the

bigrams. For instance you take the and in right similarly you take rain and Spain right,

you take in and false and so on and so forth right. And the point is that is that if you take

a very a number of such variations of this 1 skip 2 grams to skip 3 grams and so on and

so forth you captured you essentially capture this collection this.

So, first  of all  these set  of features are trivial  to automatically  construct  you are not

sitting  down and  thinking  about  special  feature  engineering  and  secondly, once  you

throw in all these features, they actually capture a lot of semantics of the document right.



An interesting way of looking at this is that I mean if I sort of up in take a representation

of the document in this bloated up feature space, and then calculate the similarity of this

you can also think about it at some kind of kernel representation of the document right. 

Essentially  instead  of  instead  of  simple  features  we  are  taking  combinations  two

combinations, three combinations, four combinations of these features. The only problem

that I see right now is that all these are good, but the feature space is becoming very high

dimensional.  For instance if  you take a  few variants  of the subsets of this  unigrams

trigrams and then and then 1 skip 2 grams and so on and so forth then the number of then

the number of possible features becomes let us say if it is a 3 gram it becomes the this the

cube of the size of the image dictionary which is a lot. So, how should we deal with this

ok?

(Refer Slide Time: 09:14)

So, for the second example let us look at the problem of mail classification right and here

is the problem. That is suppose that suppose a piece of mail comes to us right and now

we have to decide, whether to put it in your inner in a particular users inbox or in the

spam box ok. Now, there are different and I mean in order to do this all the standard

online email systems. So, think of our webmail system have their own classifiers that

they have trained right and these classifiers they I mean based their decision they put it in

the they decide to put it in the inbox or in the spam box and now the classifier also gets



feedback from the users right.  So,  the user  can possibly read,  reply, forward,  delete,

forward, and then I mean or she could delete or mark the user a spam right.

So, it is possible that I take these as the positive feedback and this as a negative feedback

on the email right. And based on this feedback I can retrain my classifier ok. So, the

things to keep in mind is that each email needs to be classified in the spam boxer or

inbox and therefore, this has to be done in basically real time. A classifier has to be

updated by user feedback, which means that it has to be updated frequently because, the

nature of spam keeps on changing and users do not always agree about what is spam

right.

(Refer Slide Time: 10:32)

So, in machine learning terms, this is in order to satisfy those requirements this is what

we have to do right. So, suppose we are presenting representing each email as a point in

some high dimensional space. So, these are the emails, this points are the emails ok. And

now and every users classified representing as a vector in this high dimensional plane

right users 1 classifier users 2 classifier. So, first I say that users have different spam

preferences.  So, what it  means is that the classifier  for each user is slightly different

right. So, the user 1 can potentially consider the emails from Groupon and Yahoo to be

spam, but maybe user 2 considers this  company, this  is  a company called target and

Yahoo to be spam, but not Groupon ok.
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So, we need to assign different classifiers to each user, which means that we need to

store a different hyper plane for each user. We also need to ensure at the same time we

also need to ensure that new users get a good classifier right. Because new users, for new

users we do not have that many feedback from the user. But we still need to guarantee

that we get a reasonably good classifier for the user right. Furthermore we want to update

this classifier currently using new feedback ok. So, how can we achieve all these? So,

here is one particular very interesting way of doing all this.

(Refer Slide Time: 11:51)



What we do is that we say that let us blow up the feature space right and how do we

blow up the feature space? Let us take the email right and we do sort of standard bag of

words or unigram or bigram decomposition and we get this and we get this unigrams or

bigrams from the email right. Now in order to sort of one way now what we do is that in

order to assign we assign every user their own feature address space right. What it means

is that every I mean the global set of features, this is this global set of features and then

there is a set of features that belong to user 1 then there is a set of features that belong to

user to belong 2 user 3 and so on and so forth. 

So, this is global set of features right and how do we implement this? We implement this

it is simply, we take all the tokens right and then we take all the tokens by themselves we

these belong to the global feature space right. We just prefix the name the token by the

name of the user right and these then belong to the specific to the user specific feature

space. So, notice that only the emails that u 1 gets right I mean that belong to u 1 will

have the I mean will have tokens that are specific to u 1 right.

The emails  that the same email  if u 2 gets it  would not have it would not have this

particular token right because it is prefixed by the user 2’s it is going to be prefix by that

user 2’s name not by user 1’s name ok. And now what well do? What we say that that let

us learn a classifier on this entire feature space right. It is not very hard for you to see

that what this corresponds to is that is that for a for every user we are learning a classifier

of the following form. That a classifier which has a component in the global in the I

mean a set of coefficients for the global feature space and a classifier which has set of

coefficients for that for the user feature space right. 

So, therefore, for a particular email for a test email right this I mean for the classifier

does is as follows, that it takes it I mean let me call this w global this is w global and the

set of coefficients here to be w user right. So, therefore, for a test email, we again do sort

of representation of the email in the global space and in the user space and then we take

the corresponding dot products. And therefore, what it turns down to is that we sort of

and we could  apply our threshold on this  and therefore,  what  it  says  is  that  we are

combining some a global classifier, with a user specific classifier and we are giving use

and we are giving a particular user the combination of these two classifiers right I mean

it is entirely possible that. 



So, why is this good? This is good because maybe it is a considered particularly user

who has just come into the system. So, for that particular user the I mean the w transpose

user is 0 right because I have not yet trained user specific classifier, because the user has

not given any feedback right therefore, there would not be any token on the on the on the

on the user specific  part  ok.  So,  but  then,  but for  this  user  we still  have the global

component right and we are still and because that is trained by everybody’s feedback

right.

That is a reasonably good classifier it is not clear it is not very tailored to that users to

that users needs, but it is fairly its fairly good ok. So, therefore, if I start of this new user

with his global classifier, she has a reasonably good experience there are and they are all

on onwards this particular user can start providing feedback if she wants to and therefore,

the  value  of  this  the  importance  of  this  part  of  the  of  the  classification  technique

increases. And, so there might come a time if the user provides enough feedback that this

part  of  this  part  of  the  of  the  of  the  this  part  of  the  classification,  really  has  more

importance than this part which is the global part. And then the user will start getting

them will start sort of acquiring the benefits of personalized classifier ok. So, this is a

very natural way of going from a from a global initialization to a personalized classifier

for more involved universe ok.
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What is the bad thing about it right? And obvious bad thing about it is that the size of the

dimension the resulting dimension space has blown up a lot, because if you if imagine

that if I have n users right if D is the if D was the size of the of my initial dictionary my

current  set  of  dimensions  is  N  times  D  right.  Because  I  am  multiplying  the  I  am

multiplying the user by the I am multiplying the number of possible size of the possible

dictionary by the number of users and this is potentially a huge right. 

Because while the while the emails are sparse the vectors w and sparse. So, therefore,

keeping all  these vectors the w in this  and I  mean maintaining this  vector w in this

particular space is fairly expensive right. So, maintaining even a single w which is what

you  have  to  maintain  in  this  in  this  space  of  size  ND is  very  very  expensive  it  is

impossible.

(Refer Slide Time: 16:57)

So, what can we do? So, if we want to compress this features into a into memory right

and the way to compress. And what we want is that this compression should be linear

why is this linear? It makes updating easy right because if you remember that we want to

update the classifier constantly right and one of the ways of doing the update is by doing

some kind of a gradient descent. 

For instance a sarcastic gradient descent that that when you get a new email or a batch of

emails with the user feedbacks on them you just do you just do a linear update on the I

mean you just do gradient update on the classifier ok. Ideally it should have guarantees



right and should maintain sparsity as much as possible right that I do not want I mean the

emails themselves are; obviously, sparse data I and I do not want to densify it by too

much ok.

(Refer Slide Time: 17:43)

So, so how can we do this right? So, here is an obvious way that suppose we create a

hash table that hashes features into buckets right. So, what I mean is as follows; that

suppose I have and this is my original set of features right, which is which essentially

very large right, the dimension is very large, but it is sparse. So, maybe I have some

values out here C plus 1 plus 2 and then plus 3 and so on and so forth.

So, this dimension is really large let me call it capital D. So, what I could easily do is that

is that hash it into a small number of dimensions small d right. So, so all that I need is

that I need a hash function that goes from capital D to small d right and I can put it in

here I can put it in here right. So, basically then a bunch of features can collide. So, a

bunch of features might  go to  the same position in  the smaller  in  this  in this  in the

smaller representation, and what I will just do is basically add up put in half a counter

out here that is the addition of these counts.

So, suppose these three these three features go into the same bucket in this using this

hash function, then the value out here will be the let me call this a 1 let me call this a k

and let me call this a i. So, the value out here is a 1 plus a k plus a i right that is the value

that you put in here this could be one way of doing it right. The question is that is there a



principle better simple way of thinking about this right sure is this enough, should I be

doing something else right  and the  what  about  the guarantees  you because  we were

promising some bounds with the I mean we were promising some algorithms that comes

with some guarantees right.

(Refer Slide Time: 19:29)

Now if you have paid attention in this course yeah you should it should not be very hard

for you to realize that this is essentially Sparse Johnson linear transformation right. We

were transforming from one particular vector to a smaller set to a smaller set right by

using a hash function right, except that here we are using only a single hash function

right instead of using multiple hash functions. So, I could think of it as a hash function,

as a hash transformation or I could think of it as a random projection that preserves

sparsity ok. So, then in that case we should really take guidance from the principles of

designing a random projection.

As well as and if you do this well be able to draw upon the theoretical guarantees random

projection comes with right which we have seen is really strong. And in particular one of

the lessons that you should draw is that it is not enough to say supposing this is again a 1

a k a i and let us say all of these have gone to the have gone to the same bucket. In

particular it is not enough to say to put a 1 plus a k plus a i in the bucket right because

remember what SparseJL was doing SparseJL was adding a random sign to each of them

was multiplying each of them by a random sign. So, I should do s 1 times a 1 you pick



keep this as it is. So, instead I should do s 1 times a 1 plus s k times a k plus s i times a i,

where each of the sis is a binomial is a Bernoulli plus minus one with probability half.

So, why is this important intuitively? Intuitively this is important because it helps the

counts out here be unbiased estimators of the counts of the original set of counts ok. So,

so this  is one of the and once we do this, we get exactly  this Sparse Johnson linear

transformation with the I mean with the sparsity 1. And in fact, we have seen this variant

this is what we called as a subspace projection right and we saw that, it does preserve

some very nice properties for the subspace reservation ok.

(Refer Slide Time: 21:38)

So, how do we use it practice ok? So, the algorithm seems fairly clear right in terms of

the theory. So, what do we do in practice? See the theoretical guarantees, we assumed all

independent hash functions or at least  some key wise independent hash functions for

some value of k; typically k is like log one over delta right by delta right.

So, in practice we do not really create k wise independent hash functions by ourselves.

What  we do is  that  we typically  use  standard  fast  hash  functions.  There  are  deeper

reasons for doing this as to as to why this should work. So, people have thought about it

and there are some theoretical guarantees, but in, but basically the idea is that there I

mean given the given that the practical data is not entirely adversarial chosen, you do not

really have to guarantee complete randomness perfect randomness in your in your hash

function.



It is enough to it is enough to choose a practical fast hash function for instance there is a

particular software called Vowpal Wabbit right that actually implements this I mean gives

you a very fast classifier using this feature hashing, and it uses and it uses something

known as a murmur hash 3. And in fact, you can you can a lot of the a lot of APIs

standard API I mean machine learning, packages official have feature hashing have a as a

standard APO including ones that including packages that run on scalable systems.

Like Hadoop and spark ok. So, then given I mean that ideally if you I mean if you are

using one of these machine  learning packages  the suggestion  is  that  you should use

definitely  use  that  feature  hashing  API  that  they  have  provided.  If  you  are  using

implementing your own classifier, you should use one of the standard fast hash functions

like murmur hash right and this is what you typically do right.

That you create your let us say you are doing text classification, you create your I mean

you find out a representation of your document in terms of the engrams bigrams etcetera,

then you hash your input data and then you learn your classifier over this hashed space

ok. So and when testing we first hashed the test point using hash functions that we have

used. So, it is very important that you that you use the same hash functions that you use

it, do not change the random seed and then you apply the classifier collision will happen

of course, collision will happen, but that is exactly the point.

That we are using these collisions we; I mean using these collisions to compress the set

of features into a much smaller much smaller dimension, while preserving a lot of the

geometry of the original set of data points right. And the kind of geometry that they

preserve is what we have seen for Johnson linens transformation right. That it preserves

moral is approximately the pair wise distance of the data points and therefore, if two

classes are separable it reserves the susceptibility right. 

So, this is the standard way of implementing; it beyond this you should use a domain

knowledge for instance if you know that there are super important features that you do

not want to collide with anybody or there are groups of features, such that you do not

want this set of features to collide with this set of features, but maybe collisions among

this set of features is fine right then you should design your hash function in an you

should basically partition your hash the range of your hash functions in an appropriate



way right. And all and for all that you need to think carefully about the problem setting

ok.

(Refer Slide Time: 24:57)

So, before we end I will  show you a bunch of experimental results  on the for spam

classification from a particularly from a paper that we had. This is this is a result that

took 3.2 million year emails from yahoos data and about 400 key users right. So, if we

used the  user  personalization  technique  that  I  had  mentioned  as  well  as  the  stand a

standard hash map it would have taken us 70 terabytes. 

Just to store this right because there happens to be around 40 times 10 to the 6 unique

tokens in this in this data right what we did was that, we sort of used these hash functions

in which in which we controlled in which we control that the size of the size of the size

of the of the hash space right. And then we say that the hash space is only going to

contain 2 to the 26 floats and therefore, the maximum size is 256 MB right and on the x

axis, you see the number of bits in the hash table and therefore, the size of the hash table

is 2 to the power of this right.

So, this is 256 MB instead of the 70 terabytes right and on the y axis you we have plotted

the relative classification error; that means that the black one is the baseline classifier;

where there is a single classifier that is assigned to everybody right. If we assign I mean

if we hash happened to hash the classifier that performance is; obviously, a little worst

right, but it soon boils down to the performance of the standard baseline classifier. If you



assign everybody their own persons classifier we get a huge boost more or less like 30

percent I mean 30 percent decrease in the error rate ok. So, this is actually something that

is very practical.

(Refer Slide Time: 26:49)

So, just to summarize hashing has proven to be an important  practical  component in

order  to  scale  supervised machine  learning the  large  feature  spaces  some amount  of

background theory for this is provided by the random projection literature right. That this

gives us the other random projection literature gives us intuition, that what were really

doing is preserving the structure the pair wise geometrical structure of the original space.

And therefore, the and therefore, it is useful in class in the supervised setting because the

classes remain separable if they were originally separable. 

However, it is actually a lot of open questions for instance, if the if the margin is large

how does that play a role in deciding the size of the target hash function right what about

generalizability what kind of generalizability bounds can we can we actually prove right.

Can I get do I really need the entire the entire strength of the random projection or can

we sort of do with much smaller number of dimensions. So, these are all questions does

this  generalize  to  non-linear  in  the  non-linear  setting  for  instance.  And these  are  all

questions that people are pursuing for research ok.
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So, the primary reference for this are is a paper of us that is called Feature Hashing for

Large Scale Multitask Learning as well as the original feature paper that introduced Hash

Kernels by Shi Petterson, Dror and Smola and Strehl and Vishwanathan that came out

AISTATS and then finally. 

Thank you.


