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Hello and welcome to the course on Scalable Data Science. My name is  Anirban I am

from IIT, Gandhinagar and today we will study Leverage Score and its Applications.
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So,  until  now  we  have  looked  at  different  applications  of  the  random  projection

techniques  and various  linear  algebraic  problems right.  And some of  these  problems

some examples of the things that we have studied have been number one application of

random projection to approximate PCA to approximate matrix multiplication, we have

looked  at  a  particular  decomposition  low  rank  decomposition  called  a  QB

decomposition. We have also looked at how to apply random projection in order to do l

two regression efficiently.

So, the pros of these of these techniques have been that that lot of them are numerically

stable, and hence practical, they are also computationally efficient theoretically as well as

practically, but the cons is that is that when you are computing random projection right

the result  might not always be very interpretable right. For instance imagine that we

started with the matrix  of documents  versus words right  and then we sort  of took a



projection of it, some random projection of it on the column space and we have some

documents versus projected directions right. Now these projected directions are linear

combinations of words right including both positive and negative weights, because the

random number is  going to have; I mean, the random variable  is  going to take both

positive and negative values. And therefore, you are going to combine words the word

counts by using coefficients that are both positive and negative.

And this does not have any direct interpretable meaning right because what does what

does it really mean to take combinations of words; that is point number 1. Point number

2 is that I mean see each of the documents itself was fairly sparse right, but once we take

linear combinations of the document I mean it is possible that each document had 10

words  or  an  average.  But  once  we  take  linear  combinations  because  the  linear

combinations are dense, then a is essential at dense random projection, the matrix that we

have at the end is fairly dense right. And this is the same issue that we had seen in the

case of the of the dense random projection. And so, it is possible that the space taken by

the by this by this dense projection although its low dimensional is actually much more

than the space taken by the original sparse or document matrix.

Right  and the and there is  there is  nothing special  about  what  documents  this  could

happen for any sparse data.  That once you convert  that is that once you use random

projection right or once you or once we get a singular value decomposition of it, right the

space taken even if we do a low rank decomposition of it the space taken could be much

more  than  the  space  needed  to  represent  original  data,  because  a  either  the  random

projection or the low rank decomposition for instance the QB or the SVD. They are all

dense I mean, they are essentially dense there is no sparsity constraint on them. So, let us

keep these two issues in mind as we as we go through this lecture.
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So, in order to handle these two issues, let us look at let us think a little bit about the

relation between projection and sampling right. So, until now we have really been talking

about projections of vectors right.

So, what is projection? Projection is essentially nothing, but a linear combination. So, so

what if we wanted to choose actual data points instead of taking linear combinations of

data points, can we do that right? And we again had faced this issue when we were trying

to speed up random projections,  and then we resort  it  to  something like  a  sampling

matrix and then we saw that we could not always do this right we could not always do

this while retaining the properties of the random projection.

So, here again will  welcome back to that  question in a slightly different  setting,  but

related setting. And this actually is part of a very broad I mean a much broader question

in algorithms right and the broader question being is that given an optimization problem

right. Can we create a smaller data set? And we want and we are solving the optimization

problem over a data set x right that suppose we have we have a problem we have some

function f, and we want to get let us say the max of summation f i right.

Where the max over f and the summation is over all xi belongs to x correct and my intent

is to get the f that maximizes this quantity ok. So, the question is that instead of instead

of taking the sum if the data set x is very large, instead of taking the sum over all points

in the data set that can I find a much smaller data set let me call that c right; such that I



take this sum over that smaller data set and maybe I sort of adding a weight to I sort of

multiply each of these by a weight right because maybe I mean; for full generality let us

just I mean put in a weight for each point and instead of taking this sum over the entire

data set can I just do the sum compute the sum over the set c.

So, this is typically known as a core set and there is a lot of literature on this from the

computational  geometry perspective  ok.  The techniques  are  mostly orthogonal  to  the

ones  that  we  study  have  studied  in  this  randomized  numerically  linear  algebra

techniques, but in a bunch of recent papers these directions are starting to converge. So,

we would not look at the problem of corsets from the. So, we will look at the problem of

corsets again from this rand and from this randomized numerical linear algebra setting

and specifically we will look at two settings linear regression and matrix factorization

ok. And we look at a one specific way of creating these corsets by using a sampling

technique known as leverage core sampling ok.
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So, let us sort of recall what linear regression the setting of linear regression that we had,

that we have we are mostly talking about over constrained setting that is n is bigger than

d. So, we have a set n your matrix A of that is of size n by d and were looking to find a

vector x right; such that the error minimize for all possible x A x minus b 2 norm this is

what we looking to minimize.



So, at this point we are not putting any constraint or any regularization of them on x right

all that is all that has been done, but we are not covering that in this course and what well

be doing in order to solve this problem more efficiently. We had our projection matrix

omega right. And we were sort of we were shortening the matrix A converting it into a

smaller matrix by multiply pre multiplying it with omega, and then we also find out a

smaller version of b by pre multiplying it with omega and then we solve the smaller

problem this is what we were doing right. 

So,  now, the  question  is  that,  that  instead  of  projection  can  I  replace  omega  by  a

sampling matrix right? So, what is replacing omega by A sampling matrix mean? What it

means is that that the effect the omega A right should really be a matrix where each row

in omega A right really comes from one of the rows in A and this should happen for all

the rows. Each when omega I should really come from one of the rows from A right and

typically we we tend to do sampling with replacement, because that is much easier to

analyse ah, but there is nothing sacrosanct about it. And some and that is the same and

that the same for each element in b ok. 

So and why would this be helpful? Ok one of the reasons is; obviously, clear that if each

row in A is really just a scaled version. So, this potential is scaling if each row in A is

really just a scale if its omega A is really just a scale version of the of one of the rows in

A, then the size taken to store omega A cannot be much more than the size taken to store

a right.

So, the question is that does such omega really exist ok? Because remember what what

the property that we what was the property that we needed out of omega? We needed the

fact that the rank of omega A right; we need we needed the fact that the rank of omega A.

It is really equal to the rank of A right. In fact, we need it a little bit stronger than this

what we needed was that with mega preserves the omega preserves the singular value

structure of U of A right which is the left singular vector of which are the left singular

vectors of a ok, but let us even forget that let us even look at the smaller constraint that

we want rank of omega A to equal the rank of A and then it is not entirely clear right that

we can actually find such an omega.

So, of course, here is an easy solution right that if we were allowed to look at A and if we

were allowed to sort of find out d linearly independent rows of A right, then we might be



able to do this well easily. But doing that is really again to just solving this problem this

regression problem by itself  right.  So,  the question is  that  can I  quickly find out an

omega in a manner that is computationally much less efficient, that is computationally

much  more  efficient  than  actually  solving  the  regression  problem  and  can  I  still

guarantee this ok.
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So, the next question and one that we just mentioned before is that of finding a CX

decomposition. So, what is the CX decomposition? Here we are saying that suppose we

have users versus movies and what I really want is a low rank decomposition of this

matrix?

Because, we believe that a low rank decomposition will expose the different genres or

the topics that the users. And the move and the movies that the users are interested in and

that movies belong to right. So, the low rank decomposition is going to put users and

movies  in  the  same  in  the  same  plane  right  and  then  and  then  we  can  use  this

representation this joint representation in order to do recommendation and so, on and so,

forth right.

So,  but  now  here  interestingly  what  we  want  is  that,  we  want  this  low  rank

decomposition  in  a  manner  that  the  I  mean  instead  of  instead  of  a  general  QB

decomposition, we want it to be a form such that we first get to choose a set of columns

C that are C I mean each of the columns needs to belong to one of the each of the



columns of C has to come from one of the columns of A modulo some scaling right. So,

C is really a subset of the columns of A and I still want to guarantee right that I can find

such an C and such an X and the corresponding x.

Such that the error A minus CX frobenius is within a small bound a small factor bound of

A minus A k frobenius which is the optimal error ok. And this approximation really I

mean that I mean theoretically it should be within some small 1 plus minus epsilon and

of course, epsilon is going to control the size of the size of c.

So, does such a C really exist even that is not entirely clear. However, if we could do this

then we have convinced ourselves that this will be useful in a lot of machine learning

applications right. Because now the columns of C are really interpretable in addition to

not  being  in  addition  to  having a  smaller  foot  that  of  a  the  columns  of  C are  also

interpretable  because  they  are  actually  in  this  case  for  instance  they  are  actually

examples of movies themselves ok.

(Refer Slide Time: 12:57)

So, here is one possible way right. So, we have remember we have looked at the problem

of matrix multiplication, that we have that we are trying to I I mean in order to multiply a

times b two matrixes A times B, we created two samples a sample A from sample C from

A and A sample R from B using some sort of a length square sampling right. In particular

one of the one of the special cases that we looked at is as follows when B equal to A

transpose right. In the case that B equal to A transpose, then the length square sampling



that people interested in looked turned out to be the following right; that I choose C that I

create the matrix C. So, the matrix R in a uv equal to n transpose then the matrix R is a is

again equal to c transpose right. So, I need to create only the matrix C and one of the

ways we discussed in order to create a matrix C was to choose the ith column of Awith

probability that is proportional to the length square of the ith column right.

So, basically every column of c right is a IID random variable right and that IID random

variable takes the value of the of the ith column of a with probability proportional with

probability pi. So, it is a and it takes a for instance it takes value A 1 it takes value A 1

with probability A star 1 with probability b 1 it takes value a star two with probability p 2

and so, on and so, forth ok. And we are what we discussed was that you know I mean

that once we choose this values of pi we get this particular approximation right. That if

the happen to choose C columns right im overloading the the notation C im using it both

as a set and as and as a matrix. But if I if I happen to choose C columns in small c

columns in C, then I get the guarantee that A transpose minus CC transverse frobenius is

not very big.

In the sense that it  is frobenius sum of a square by square root c and this particular

sampling itself and this particular decomposition itself can then be used to obtain low

rank approximation and CX decompositions with additive error with additive error. And

the additive error that we get is really the one that comes out here and in each of this

cases  basically  the  idea  is  that  you choose a  set  of  columns  C using this  particular

sampling  technique  right  and  then  you  do  a  low rank  decomposition  of  that  set  of

columns right or you get a CX decomposition using that set of columns. And the bound

on the error that you get in the data t bounded error that you get in these two cases is

comes really from the bound that we have calculated here and we are not going to go into

the details of this ok.
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Because what we are interested in is today is known as the leverage scores. So, let me

define the leverage scores first ok.

So, let us take a matrix a let us consider the setting when n is bigger than d right that the

number of rows is bigger than the number of columns, and let us take an orthonormal

decomposition of the set set of columns right. So, let u be an orthogonal basis of the set

of columns and let me write A as u times x right. So, use of size n by d without loss of

generality assume that A has rank d.

So, in that case I defined the I defined the ith leverage score the leverage score after of

the ith row right, to be the rho norm the norm of the ith row of U square right. So, I take

the so, if I take ith row of U and I take the l two square norm of that right and in order to

make it a probability I divide it by the sum of these norms right, which is essentially the

frobenius norm of U ok. So, this is a is a quantity between 0 and 1 and the sum of these

equals o1 exactly ok.

And and this is known as the leverage score of the ith row or we will call it the row

average scores. So, so one of the things that we will do is that what we will typically

once we have defined this leverage scores, we will typically create a sample of rows

using  the  leverage  scores  li  with  replacement  ok.  So,  just  like  we  were  using  the

probabilities  pi  in  the previous  in  the previous  slide,  we I  mean here instead of  the



probabilities pi will use this leverage score probabilities li right and will create and we

will do sampling with replacement with I mean by taking these probabilities ok.

(Refer Slide Time: 17:45)

So, before we show its use let us look at a few of its properties see. So, one of the things

should be fairly obvious the row leverage scores only makes sense that the number of

rows is equal is greater than the number of columns.

Because else the form of u looks as follows U looks like I mean U looks like because if

number of a if then, if a looks like this number of if the number of columns is bigger than

the number of rows right then U is a square matrix right U is a d by d orthonormal matrix

and in that case all the row leverage scores all the row norms of U are all 1 right. So, in

that case it does not make sense to talk about it and it sort of is intuitive because if the

number of columns is bigger, then you should not really be talking about sampling rows

you should really be talking about sampling columns ok.

So, and also an important quantity and an important thing to realize is that, while we

define the leverage scores in terms of in terms of a specific ortho[normal]- I mean an

arbitrary orthonormal basis the actual definition is independent of the orthonormal basis

that you choose right.
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The in order to say this let us just look at this calculation, that suppose Q and u are two

different orthonormal basis of the of the columns of the columns of A ok.

And because there are two different or thermal bases of the columns of A, then there

exists some rotation matrix R right which is I mean rotation which means an orthonormal

matrix d by the orthonormal matrix R such that Q equal to U times R right what; that

means, is that, the ith row of Q is really equal to the I at row of u times R.

So, the norm of the of the two norm of the ith row Q equals the two norm of the ith row

of U right and this is true for any two basis any two orthonormal basis Q and u and

therefore, and because this is what we define as the leverage score as the and this divided

by the normalization, and remember that the normalization the frobenius norm of u is

always d the frobenius norm squared always d and that is independent of the basis that

you choose. Because both th enumerator and the denominator are independent of the

basis that you choose an leverage score itself is independent of the basis.
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So,.  So,  here is  I  mean,  once you define the  leverage  score here is  going to  be my

algorithm for linear regression. What we will do is that we will create the matrix will

create the matrix omega as follows. So, omega is going to be s by n matrix right and in

order to create the in order to create that the tth row we will choose we will choose I with

probability li with replacement. So, therefore,. So,. So, and and suppose for the tth row,

we happen to choose the we happen to choose the I specific I right. So, therefore, for tth

row of omega will place zero everywhere else,except for the except for the tth position

and in that position we will place we will place one over c square root of li ok. Basically

we are normalizing by the by the o[ne]- by the square root of the probability that we

chose it, with and then we solve this.. And once we have defined this particular omega

we use it as we were using it before basically we solve omega Ax minus omega b and

then we return the result as my approximation.
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In order to do this CX decomposition here is what we will do right? We will first we will

first decompose A as U sigma V transpose U sigma V transpose right and then we will

take the top rank a U and V. So, so it will be a thin SVD and now what well do? Well

define a lis because we because now we want to sample columns of a we will look at V

transpose instead of instead of U ok. And we will and we will take the rows squared

length of V k or the of the column square length of the of the Vk transpose and that and

that will give me the corresponding leverage scores right.

And we will do exactly the same; that will pick column I with probability in order to

define C we will pick column I with probability li normalize it by by 1 over square root

of li and add it to the to the tth column of as the th column of c and this will keep on

doing with replacement which means that the same column of a can be pick multiple

times and we put in C and then we will define X to be the pseudo inverse of C times A

that is it ok.
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And what and what will be able to show is that both in the I mean both in the linear

regression case that, we saw before and in the in the in the CX decomposition case the

that were seeing now is that well get 1 plus epsilon approximation right. So, of course,

this I mean the epsilon that you get you have to be in order to show such a result the

epsilon the that you get has to figure in the number of samples that you choose right.

So,  so  only  when the  number  of  samples  is  right  I  mean  when number  of  samples

depends on on some on this on this epsilon and delta, you will be able to show that with

probability 1 minus delta you get a you get a guarantee that a minus x is is not more than

1 plus epsilon of times the optimal error, and will be able to get a similar guarantee for

linear regression.
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So, just to give some intuition as to why leverage scores work; so, all proofs that show

leverage  scores  have basically  of  the following form right  then consider  U which is

which is an orthonormal basis of a right and therefore, and because of that U transpose U

is actually the d by d identity matrix. It is not very hard to see and these are the leverage

scores right  and these are the leverage scores that  come out.  So,  using this  leverage

scores wego from U to U tilde right. So, so using the leverage the sampling using the

leverage scores like I described in the previous two slides as well as using normalization

we go from U to U tilde right.

(Refer Slide Time: 23:57)



And suppose we choose suppose the number of samples that we choose that is the that is

the number of rows of U tilde is some r where r is at least d log d by delta by epsilon

square.  So,  this  epsilon  is  the  error  is  my  error  parameter  again  and  delta  is  my

confidence. Suppose we have chosen so, many rows so, many samples from u right. In

that case well be able to show that with probability 1 minus delta right the u transpose u

remember u transpose u is really the identity matrix t. So, u transpose U minus the U

tilde transpose U tilde the two norm the spectral norm of this matrix is less than epsilon

ok.
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So, let me interpret what; that means,. So, what; that means, first of all is that see the I

mean the singular values of I are all 1 right and therefore, what this means is that the

singular values of U tilde transpose U tilde lie between. In fact, the singular values of U

tilde transpose U tilde lie between one 1 minus epsilon and 1 plus epsilon, which means

the singular values of u lie between square root of 1 minus epsilon.

And square root of 1 plus epsilon is specifically what it means is that U tilde is full rank

because all the singular values line this line in this interval right. And what this will

allow us to do later is in the proofs instead it allow it allows us to bound the norm]the

pseudo in the norm of the pseudo inverse of a right and this and this pushes helps us push

the proof through ok.
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.

So,. So, how do we estimate leverage scores right? Because if you were sort of paying

attention, in order to I mean sample using the leverage scores we I in every case we

needed to get we needed actually needed to get the singular value decomposition right

and as we saw that singular value decomposition is fairly is fairly expensive.

In fact, it is at least as expensive as, as the linear regression is doing solving the linear

regression and also I mean getting a CX approximation. So, the CX approximation is not

so, obvious because it is not clear that such a without the without the proof without the

without our proof using the similar using the without our proof using the leverage scores.

Leverage scores it was not even clear that the CX decomposition existed right with the

small case. So, therefore, for the CX decomposition we can still say that the leverage

score has its use, but for the linear regression it is not entirely clear; however, luckily it is

easy to estimate leverage scores although, I mean while we cannot get an exact value of

it we can estimate it to some bound. And it turns out that the entire analysis can work if

we  can  approximate  it  to  some  particular  bound  and.  In  fact,  here  is  a  here  is  an

algorithm for approximating it and. So, first it is going to take time I mean which is

proportional to n nb by epsilon times log factors instead of the instead of the nd square

and its going to use the randomized Hadamard transformations that we have seen right

basically has the idea that we have a right. So, so first we transform a using using the



using randomizedha  Hadamard  transformation  matrix  right  and then  we get  a  much

smaller a much smaller a right ok.

So, we get a which is s by; so, a is n by d and using using a PHD matrix omega A we get

omega which is s by n. So, this is omega A right and then we do a QR decomposition of

this tI am calling it p how right till and therefore, I will rename it to say that this is p ok.

So, so PA is of size s by n and then, we do a QR decomposition of PA which is actually

cheap now because PA is of size only s by n right and then we get see the point is that the

r that. We get out here is a very good approximation of the r in that we could have gotten

if we had done the QR decomposition of the original a.

So,  therefore,  once  we  look  at  the  matrix  AR  inverse  right  that  is  a  very  good

approximation to that is a very good approximation to an orthogonal basis of A right. So,

AR inverse is a very good approximation to the u which is a orthogonal basis of A right.

And therefore, by using the matrix AR inverse in fact, we can do another I mean in fact,

because we only need the length of the rows of AR inverse we can we can do another

trick with the random projection just for speed, but basically using the matrix AR inverse

we can get a very good approximation of that leverage scores.
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So, just to summarize that in this in this technique,I mean in this lecture; we discussed

the role of sampling versus projection and we discussed that sampling is more preferable

to projection if you are interested in preserving things like the sparsity of the matrix, the



total  memory footprint  the  interpretability  as  well  as  its  often  useful  in  downstream

machine learning applications. We did see at least one interesting I mean basically two

interesting ways one is the length square sampling and the other is the leverage score

sampling,  in  which  we  are  doing  length  square  sampling  with  respect  to  the  an

orthogonal  basis  right.  And  we  saw that  at  this  particular  leverage  scored  has  very

interesting applications in solving linear regression in solving linear regression as well as

getting a CX decomposition approximately. There is an extension of leverage scores to

other  norms ah;  however,  the  there  are  while  that  theoretical  results  the  I  mean  the

extension of leverage scores to other norms is not really very practical yet right.
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Just for the just to give you some references lot of the slides as I have been gotten from

Michael Mahoney and petros stock from their boot camp that you can Google, that you

can obtain by Goggling this. And it is really a very nicely set of lectures and we have

been following this lecture notes by both of them and.

Thank you.


