
Scalable Data Science
Prof. Anirban Dasgupta

Department of Computer Science and Engineering
Indian Institute of Technology Gandhinagar

Lecture - 16 a
Modified QB + Linear Regression

Welcome to the course on Scalable Data Science my name is  Anirban I  am from IIT

Gandhinagar. Today’s lecture is going to be on a modification that we look at for the QB

algorithm,  for  the  QB decomposition  algorithm plus  we look at  applications  of  this

randomized techniques,  the random projection kind of techniques to linear regression

solve problems.

(Refer Slide Time: 00:37)

So,  just  refresh  a  memory,  we  talked  about  how  important  getting  the  lower  rank

composition of the matrixes for certain machine learning applications. We did not talked

about the fact that while the single value decomposition is a pretty useful lower rank

approximation  of  the  matrix,  it  is  very  expensive.  And,  therefore  we  want  to  get

something much more cheaply right and we are for instance try to build something that

we call QB decomposition.

So, what we looking to solve a solve is the following, that suppose we have a target rank

k in mind right, that is we really want to get down to the we really want to get down a

low ranker approximation that approximates that captures the error A minus Ak either in



the Frobenius norm or in  the spectral  norm right.  But  for that we give a little  more

leaving right, in approximations terms this is also known as by criteria approximation

that is just terminology. So, we so instead of using exactly ranking matrix we use k plus

p matrix or rank k plus p matrix right Q right. 

So, Q is of A is of size n by d Q is of size n by k plus P and B is of size k plus B by d and

B and Q is orthogonal matrix. And, B therefore is the projection of the matrix A onto the

column space of Q and not we really want is that the Frobenius error A minus QB or

spectral error or maybe both right is they are really sort of close approximations of the

optimal error A minus Ak Frobenius. And, or the A minus Ak 2 norm right and we further

more we also want k plus B to be more or less of the order k right because, if k plus p is

very large then achieving this is easy.

(Refer Slide Time: 02:31)

And we one prototype algorithm in which we all we did was a multiply the matrix A on

the right hand side with random matrix right. And, then we obtain the orthogonal basis

for the column space of this projected of this projection Y right and this is my target Q

and this is my t.



(Refer Slide Time: 02:51)

So, we will also saw particular bound for the we also saw particular bound for this for

instance we saw that the A minus QB Frobenius, A is can be bounded by 1 plus k by P

minus 1 the optimum error right which is the A minus Ak Frobenius right ok. So, now the

question I mean can we took better than this right? So in reality turns out that this bound

really depends on the singular values from k plus 1 to n. So, in effect what did means is

that if the singular values from 1 to k right, that is if the singular values and this is really

in the signal that we under capture. 

And  this  k  plus  1  to  n  is  really  in  terms  of  our  model  is  really  the  noise  or  the

perturbation  right.  So,  if  the signal  is  much bigger  than  noise  right,  then  the  bound

actually improves right then the bound actually then we can then we should actually be

able to improve this algorithm improve the performance of this algorithm right. In fact, it

is  also  pretty  clear  that  the  bound  improves  as  well  as  a  performance  empirical

performance of this algorithm right.

But in real matrixes this does not always hold right, what you see is if you really plot the

singular value is that the kind of follow more sort of I mean slow dk rather than a very

sharp of rather than the ideal case which is pretty sharp right, so that does not happening

reality. But can I pre process matrix, so that is something like this is becomes more true

right and this is clever way of doing this right which is as follows. That suppose imagine

that the similar value of linear dk, so now imagine the right certain squad the similar



values right; then the new sort of plot for this would be let me change the colour of the

pen, the new plot for this would be something like as follows right. If I take it to the

power, if I take it to the power 4 then it would be even steeper right, it would be even

steeper, I mean it would not go could down to 0.

So, but basically it would be even steeper ok, so what it means that if I happened really

power the matrix right. Then if sigma 1 is sigma k is bigger than sigma k plus 1 right,

then sigma k to the power p is even bigger than sigma k plus 1 to the power p right and

so on and so forth ok.

(Refer Slide Time: 05:28)

So, then what we are looking to do is that we basically instead of working with original

matrix we work with the power of the matrix right. So, if you for on the particular power

you work for the matrix is this particular expression A transpose to the power capital P

times A. So, if you just do a matrix decomposition singular value decomposition of the

matrix A and just plays it here it would not be hard for you to sort convince yourself that

the singular value decomposition of this matrix is really U sigma to the power 2 P plus 1

V transpose.

So, essentially what is happened is that we have kept the same singular vectors both on

the left and right, we have just taken the singular values and taken each of them to the

power 2 P plus 1. And therefore right therefore, what is happened is that the top I mean

the top k singular values now, which are i equal to 1 to I mean k 2 P plus 1 right has



grown much bigger with respect to the entire set of singular values this ratio all i right.

This ratio has increases with increasing P right. So, therefore I mean in and this is what

will do right.

(Refer Slide Time: 06:41)

And this is under and this is a modification of that this is a corresponding modification of

the algorithm right. That we what we do is that you given a target rank l and A P right

and this capital P think of this as 1 or 2 that sufficient and then we generate the omega as

we had said right and in this case we are using this is really MATLAB code. So, we are

using omega to be a normal I mean each omega each and every omega to be n 0 1, then

we multiply A by omega and take it is orthogonalization that is my first Q right and then

I start of keep on doing this for P iteration right. 

I multiply Q by A star right A star is really A transpose A star is the is A transpose of A

and then I orthogonalize it and then I multiply A by I mean Q by A again orthogonalize it

right. So, if you if you forget the 2 orthogonalization, then what we are doing is really

doing is really A transpose to the power P right times A omega and Q is really orthogonal

basis of this right. So, what this look does a it does this repeater orthogonalization in

order to maintain numerical stability right and just so just to prevent overflowing and so

on and so forth right.

So,  these  orthogonalization  and more  practical  reasons,  but  in  reality  this  is  what  is

happening that I that really I find A transfer to the power P times A omega right and then



I take the orthogonal basis of this particular of this particular of this particular matrix

right and that is my Q right and in I mean remember that in reality we have to take l to be

slightly larger than k I mean something like a plus 5 is enough and while I will not show

the exact bound that we get from here because, that is a little complicated expression I

will  sort  of  what  I  will  tell  you  is  that  it  is  sort  of  you  something  like  this.  That

remembered we had A minus QB and I am just writing down the bound approximately,

we had a minus QB bounded by 1 plus k by small P minus 1.

(Refer Slide Time: 08:41)

So, remember this is the difference between small P and capital P A minus Ak Frobenius

right and now if I instead run this algorithm so this was a bound had before. So, now, if I

instant run this algorithm this expression will be raised to the power 1 over P something

like one over P or 1 over 2 P 1 over capital P. So, this is capital P right and this is small p,

so this small P is really the I mean what we are I mean something like 5 which is an

extension of the that. I mean the number of which is giving me the rank the of the size of

this random matrix and it is capital P is giving me the number of iterations here right. 

So, I get to sort of do 1 over 1 by capital P of this of this of this particular error factor

right, which means that make it closer to one ok. So, this is really a practical algorithm

and it is been implemented in mat lab and in and in and also and several libraries are

available, this algorithm you can find very nice expression in exposition of this by in



Haikou Marlene syndrome ok. So, that ends our discussion our discussion of the QB

algorithm of the QB decomposition.

(Refer Slide Time: 10:02)

Now, we will move into the application of the application of this randomised techniques,

random projection  and sampling  techniques  to  another  common problem in machine

learning or a linear regression. So, what is linear regression right, so intuitively linear

regression is  nothing but  finding the best linear  expression that  explains  a  particular

target right. That suppose we have a set of data points, imagine the data points are given

in the, imagine that the data points are given in the column space of A in the in the sorry. 

The data point rows of A rather not column of space A I am sorry and now b is the target

right imagine b maybe a plus minus 1 or b have some set of values and then what you

want to find out you want to find out the I mean x is a variable. So, you find out you

want to find out A times you want to find out the best x right, such that Ax is closed as

closed to B as possible right and 1 very popular version of this is taking the l 2 difference

between Ax and b.

So, Ax is this is now sort of size d vector ok. So, let me give number here let us say A is

of size n by d b is of size d by 1 and so x is of size sorry b is of size n by 1 and x is of

size d by 1 right and can be so the question is that can I find out x right such that Ax is

very  close  to  b  ok.  So,  and  this  is  the  l  2  error  version  of  this  problem the  linear

regression. So, if it is pretty clear that if d is much larger than n right, if the number of



variables is much larger than n then I can make this error to be a 0 right because, this in

that case it is under constraint problem right.

(Refer Slide Time: 11:55)

So, what we are interested in is it over constrain setting when n is much n is larger than

d, which means there is no x that satisfy Ax equal to b right. So, what we looking to find

out is the best x such that Ax is as close to this possible according to the 2 norm right and

geometrically this is really the picture. That what we have is let us say we have the we

have  the  space  span by the  by  the  columns  of  A and  we have  B right  and so  this

particular space is a rank d space right and it lies in Rn. So, B also lies in Rn B is a point

in Rn and what we are looking to find is what is the how can I best explain b right by

taking linear combinations of these vectors in this in this rank d space ok, this is what we

looking to find ok.

Because and we might not be able to explain b completely because b actually lies outside

of this space that is entirely possible. So, this is geometric interpretations, so in terms of

the statistical  interpretation what we are saying is  that  we are find out for the linear

unbiased estimator of b ok.



(Refer Slide Time: 13:20)

So, so how do we solve this problem? So the many different ways of many established

ways of solving the problem some. I  mean one of these settings  one of these is  for

instance by is by looking at the most popular way by looking at the normal equations

right. So, the normal equation sort of says that we can look at the equation A transpose

Ax equal to A transpose b, that the optimal solution x that we find will satisfied such a

equation right. Remember the A transpose A is now of size d by d and A transpose b also

rectifies d by d so that optimal x the A star right.

So just 2 sort of said the I mean we call x will call x star with optimal x throughout the

optimal  x  will  satisfies  this  normal  equation  and  this  we  get  by  differentiating  the

objective function and so on and so forth. But once we know this we just need to solve

this normal equation and we can do it in very various different ways.

We can do it in Cholesky decomposition we could do it which really works when an a is

very well condition, we could do it using QR decomposition of A which works in a is not

so well  condition, we can also do it using an SVD decomposition of a similar value

decomposition of a right. We really works for all A but it is also pretty expensive right.

So, the time taken for each of them order nd square theoretically all other constant really

differ in I mean depending on the composition that we are using.



(Refer Slide Time: 14:48)

So, can I speed this up this is a question, the here is again the prototype randomized

algorithm right an then let us try to understand why this potentially works and then we

will try to see this is really efficient. What we want to say is that instead of I do solve this

long thin Ax is equal to b Ax equal to b, let us try to reduce this the size of A. So, how do

I reduce the size of A I multiplied by a random matrix omega right so and let us say that

the size of omega is s pi n right.

So, I multiply both A and b by this by this random matrix omega, so therefore now I have

sort of a problem of size s by d which is which is a which is omega times A right and

then we are stills solve A, I try to find the x and we try to make it close to a vector of

size.  Now a  vector  of  size  s  right  this  is  omega  times  b  this  is  the  new regression

problems that we are solving. This is what we are says taking that suppose if multiply

both A and b by the random matrix omega and then we try to solve the new regression

problem.

So now, this is much smaller regression problem, therefore it is more coefficient right.

And therefore, I mean if I solve this I mean the question is that do I really get a good

approximation  of  the  original  solution  and so that  the  tentative  claims  that  we want

something like this right.



(Refer Slide Time: 16:17)

Supposing x tilde is the is my is my is my optimal solution here and of the of the smaller

problem right and x star is my is my solution of the original problem. So, that what I

really want is that if I take x tilde and if I plug it in the original problem right and see

what the error is, remember that this error is upper bounded by Ax star minus b right

because by definition of optimality ok.

But what we say is that is Ax tilde minus b and all of these are 2 norm whatever I am not

written it is the vector l 2 norm, the tentative claim that we are going to say that claim

that we going to make that Ax tilde minus b is not much more than Ax star minus P to the

rank 1 plus epsilon and this epsilon will of course of course control the size of s, the size

of omega s the size of omega.

What is the running time of this algorithm well that comes a bummer right because, now

if omega really is n 0 1 right. If any if entry of omegas comes from normal 0 1 then size

then doing matrix vector multiplication omega times n takes time nd square and so our

algorithm is not any not any faster. So, is it really useful right it is not faster is it useful.



(Refer Slide Time: 17:36)

Let us let us understand why it is potential useful right, in order to see this we need to

understand the geometrical picture a little well right. So, remember the pitcher that we do

the that we have this span of A star which is really a rank d space in Rn. So, this is a

subset of Rn but it is it is a rank d space and here we have b which is a point in Rn and

what we looking to find is really the projection of b onto the column space of A right and

this error and this is and this is my error or the optimal error right; which is Ax star

minus b which is basically the norm of Ax star minus b.

So, now what we did was that we projected each of these A star i each of these vectors A

star i into a smaller dimensional space omega A star i right. So, this is now a subset of Rs

right depending on the SR b of and similarly b has been projected from Rn to Rs. So,

now this picture gets (Refer Time: 18:37) little right because the because of the random

position because of the random sort of projection, I mean if the if sort of the position of if

this was if this is really the projection of b on A right and this is really the omega times

the projection of b on A rights. The optimal might be the optimal projection might be

somewhere a little different right than the than the previous point right.

But the point is that they all these plotation are really small right, I mean if the this is the

new projection of omega b onto the onto the column space of omega A star i it is what

we are going to claim, is that it is not very far of from this previous projection right. So,

therefore the linear I mean the components x that sort of created that is create this new



projection is not a not very different from the components x that that get this from the

new projection ok.

So, mathematically here is what is going to be that if you look at the I mean look at the

normal equations this is this is how we get the optimal x, that than I take A transpose A

see imagine for now that is rank d, I mean A transpose A is a full rank d matrix we can

extend all  of this  to the to the rank diffusion case easily. So, then x star is really A

transpose A inverse time A transpose b.

Which is the, which also be the witness the pseudo inverse A rank b right. The optimal

solution for the for the sample problem is now instead of A I replaced it by A pi omega

times A right and therefore it is a it is this just particular quantity right. So, this A should

not be here right, so I mean it this particular expression just by looking at the normal x

the normal equation of the of the sub sample of the projected problem.

(Refer Slide Time: 20:31)

Now, at it is core what we are going to mean what this proves says is that we can prove

matrix concentration type inequality, to show that this particular matrix has a 2 norm

which is  less  than  epsilon  ok.  So,  remember  what  this  I  mean just  to  un make you

understand what this what this matrix is, this matrix has I mean this particular matrix has

a 2 norm which basically I mean not less than epsilon which is less than epsilon right ok.



So, what it means that U omega omega transpose U transpose is more or less similar to

UU  transpose.  So,  remember  that  UU  transpose  is  the  projection  matrix  right,  so

therefore it  has a singular set of singular values 1 and then and then 0 right. So, it is d

similar value that are 1 and everything else is 0 right. So, it is a n by n projection matrix

and this is a this is again n by n projection matrix right. But it is an n by n projection

matrix of much smaller rank of rank s right and what you gone to say is that, is that if

you can look it singular values all of them. In the non 0 singular values all of them are

going to be about 1 plus minus epsilon in the range 1 minus epsilon to 1 plus epsilon this

is  what  this  particular  bound says  and we can prove this  using matrix  concentration

inequalities. 

I  mean  even  using  the  matrix  multiplication  theorem  that  we  did  earlier  and  the

randomized matrix multiplication theorem that we did earlier  and sort of plugging in

suitable values, but it is not right. So, then so then I mean it is so if I mean again then

what is the s or other what is omega that we need to choose. We need to choose omega

that essentially satisfies jl lemma with factor with a error bound epsilon and with delta to

be to be like delta is a is said to be like 1 over d or 1 over poly d right.

(Refer Slide Time: 22:45)

Which means that if you take I mean if you certainly, if you take the size of omega to be

if you take size of omega to be something like d log d by epsilon square it is sufficient

ok. So, now comes the question that this is given with s to be something like d right. We



show that we show that the random I mean even if s was d then multiplying omega times

a takes time nd square right. So, if s is d log d epsilon square then it even slower right

which is slower than solving the linear regression problem itself. So, what we are doing

anything useful right.

(Refer Slide Time: 23:23)

It done for the solution to the this is something we have already seen right, we have seen

this  randomized  Hadamard  based  random  projection.  This  randomize  Hadamard

transformation  it  is  going  to  say  right  and  just  recall  for  the  randomize  Hadamard

transformation was we say that we take the Hadamard matrix, which is really define by

this Hadamard square root n H n and H n is to find in this in this recursive manner ok.

And this  is  really  that  normalized  the normalized  version then we take the diagonal

matrix plus minus 1, that that randomised transformation right and further more instead

of the I mean after that we had a sparse go symmetric, we do not really need a sparse go

symmetric right now what we can do is that we can just take a sampling matrix. So, what

is really a sampling matrix sampling matrix is a something very simple we say that for it

is a s by n matrix right and for generating every row of this matrix we toss a we toss a n

sided coin right and the coin says that for this matrix for this a for this row I am going to

put a non 0 at the ith position right and everywhere else will be 0. 

So, the ith position you just normalize I mean there is a normalisation factor which is this

square root n by s x and you put in square root n by s are the ith position and you put in



the everywhere else 0 everywhere. Else say every row puts a select only one position try

to put in a nonzero entry that is it. So, this is and this is and this happens and happens

with equal probability for all the rows and all the and all for all the positions and all the

rows adjust IID adjust IID random variable from the same distribution ok. So, this is my

matrix this is my omega P H D.

(Refer Slide Time: 25:27)

So, now it should feel is simple to say that that calculating this P H D takes time is much

faster right, that calculating this P H D takes time only in d log n right plus sn this is the

time for protection and s and as I said before it is enough to take s to be at least c log d. I

mean C to be d log d by d log d by epsilon d log d by epsilon and then we can sort of

ensure that we get an epsilon approximation 1 plus epsilon approximation right. That the

x still other I find out from the smaller problem is really one plus epsilon approximation

to the x star to the to the original problem right.

So, the time taken to solve the final problem the smaller problem right so, first so the

total time taken is the taken for the projection for the time taken to solve this problem

right. So, time taken for projection we are already mentioned, the time taken to solve

smaller problem is that sd square because. Now I have a s by d s by d matrix s by d linear

regression problem, so therefore the overall  times.  So,  pugging in the value of s the

overall time something like nd log n plus d plus d cube log n by epsilon plus some other



terms right and this happens be faster than solving the linear regression for if n is very

large and these are the an these are the guarantees.

(Refer Slide Time: 26:36)

So, this is the guarantee that we have seen before, further more we can also guarantee

that the I mean under certain cases we can also guarantee that the solution x tilde itself is

closed to x star right. But, for the this we need to make sum assumptions we need to

because  this  bound is  depended  on the  condition  number  of  A,  remember  condition

number of A is the ratio of the maximum singular value to the minimum singular value

right. So, the x minus x star depends on condition number of A, it also depends on how

much of b is present in span of A, it is dependent on this ratio which is depend which is

the data dependent data dependent bound of course.



(Refer Slide Time: 27:19)

So, just to mention the extensions that I mean we have shown the this particular random

projection we can extended it to take care of the Sparsity of the problem right. We can

make sure that we I meant once we use the sparse Jonson Linerar Shros or it is variant I

mean  there  is  a  more  interesting  variant  also  called  as  optimize  Jonson  linear

transformation subscription projection, then the theoretical run time matrix depend on

Sparsity of the problem.

However, I mean it is not clear the that is entirely I mean a stable algorithm in practice, I

mean the questions of numerical stability are still yield to be resolved is not been any

good experimentation there as far as I know. We can also look at there is also be results

about regularized version of this problem and specifically about the of the l 2 regularized

versions.

There has been there has been some results that says that if we using regularization, we

should actually be able to project although much smaller on number of dimensions right.

There is a very nice implementation of it call Blend and pick which shows that that at

least for a class of matrixes thin rectangular matrixes. I mean there is implementation of

this randomize regression that can beat the decades old optimized LAPACK routines for

a in terms of performance for this class of matrices right. 



(Refer Slide Time: 28:37)

And the so just an most of the lecture just to give the reference, most of the lecture was

from these lecture notes by Petros and Michael. And, if you are interested in looking at

the papers you should look at the paper by blend and pick by hibernate all, as well as the

other references that will be put on the webpage right.

Thank you.


