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Welcome  to  the  course  on  Scalable  Data  Science.  I  am  Anirban, I  am  from  IIT

Gandhinagar. Today’s lecture is number 15 b on QB Decomposition. Today we will talk

about different kinds of dimension reduction that are applicable for large datasets ok.

(Refer Slide Time: 00:30)

So,  before  we  go  into  our  definitions  what  are  the  some  algorithms  are  dimension

reduction that we are looking into, let us motivate the question of dimension reduction

from the point of view of machine learning applications right. So, as you probably know

that recommendation systems building recommendation systems is a big area of machine

learning right.  And we have mentioned that if we look at sites like Amazon, Netflix,

Flipkart, even Google all of these have I mean generate a huge amount of revenue by

being able  to  recommend the  right  product  to  the right  person right,  the  appropriate

product to the right person.

So, imagine a particular recommendation system. Let us suppose we have we have data

that consists of users how a bunch of users rated a bunch of movies ok. So, this is for

instance the data that Amazon prime has collected ok. And each entry in this matrix each



entry in this matrix maybe is a term that is a score that is based on how a particular user

may be rated a movie, how much time a particular user spends seeing a movie and so on

and so forth. So, we are not gone going to the details of how this particular data, how this

particular matrix has been filled up.

The big question is that that this matrix is pretty big right because potentially there are

hundreds  of  thousands  of  users,  and  similarly  there  are  hundreds  and  thousands  of

movies ok. So, but the matrix is also very sparse because each user probably has not seen

more than what, 100, 200 movies even if even though she might be a movie buff right.

And so every row potentially has every row which is of size the number of movies which

is let us say 200000 movies has only 200 entries potentially right. And now this is the

data that we have and we might have some additional data on the user profile and the

movies and the other movies, but let us disregard from that from now right.

The question is that based on this user movie data what we have to see is that user for

whom we have some data about let us say let us say this particular user and we know that

she has liked these movies she has not liked these particular movies and so on and so

forth right. And we have some rating on these on these movies my decision. So, what

should I suggest this user right, what movie should I just for recommend this user to sort

of see right.

And you can potentially imagine that the that the that the better the recommendation

system the more the users are likely to come back to the site right, because it takes time

to search through big to search the movies of the site. So, if I can actually recommend

the user right that this is the movie that that I think that they are going to like best, the

user is likely to users enjoyment is likely to increase and she is likely to come back to the

site a again and again.

So, this is what we really want right that we want to really sort of try to predict that what

is the movie that the user is going to like best, ok? So, the way this is formalized is that

we kind of imagine that this particular data,  the user movie data has some structure,

because otherwise we cannot hope to learn a model right we cannot hope to predict the

missing entries from a model ok.

So, what is the kind of structure? So, here is one typical assumption about the structure.

We assume that the users have preferences right. Let us say that the let us say that there



are different genres, it say that that one of the genre could be romance, one of the genre

could be action, one of the genre could be drama and so on and so forth. And the users

suppose have different  preferences  about  these genres  right  that  maybe I  like  to  see

drama movies 30 percent of the time I like to see I have so much preference of horror

drama movies,  have so much preferences  of action movies and so much of romance

movies ok.

Similarly, the  movies  can  also  be  characterized  in  terms  of  belonging to  genre  or  a

mixture of genres ok. So, So, what this kind of implies what this gives an intuition of is

that maybe there is a low rank structure in this data right. So, how exactly the low rank

structure manifests itself in generating the data is a question about the generative model.

And we are not going into the details of it right, but at the end of the generative model

the optimization problem for learning the model typically boils down to this. 

That we want to decompose the existing user movie data in terms of the product of two

low rank matrices right; one that we call the user versus topic right, and the other is the

topic versus the movie right. I am writing topic in quotes because I am not guaranteeing

in this in this particular module in any such model that these topics are interpretable in

the sense that these topics correspond to that the real movie topics that you understand.

One  of  these  topics  might  be  a  mixture  of  many  of  the  of  the  of  the  human

understandable movie genres. For instance right, but nevertheless right that might not be

so important this a user interpretability might not be so important from the point of view

of being able to predict well right.

In terms of the model, what we are really saying now is that lets say that that A ij right is

the is the entry is the value of the or the rating that the ith user gave on a jth movie. This

now right we are writing it we are trying to model it as a product of two things. We are

trying to model it as a distribution of the user i over the different genres which is given

by this by this particular by the ith row of the matrix X this is let me call this the matrix

X, let me call this the matrix Y. So, then the entry A ij right we try to model it as the

product of the ith row of the matrix X, and the jth column of the matrix Y right. So, the

jth column of the matrix Y corresponds to in some sense the add a sort of description of

the movie in terms of the hidden topics or hidden genres ok.



And now what we are trying to find is that what is the best X and Y, what are the best

low rank X and Y right that explain the data right or rather what are the X and Y find out

X and Y that are constrained to be low rank such that the best explain the data right. And

how do we measure best typically it is in terms of norm of a matrix norm right of some

you have to define some loss function. One of the popular loss functions is that you take

a sum over all the I mean overall the observed entries right. So, the sum is over all the

observed entries. You take the A ij which is no observed entry and then you take X the

the I mean recall that X i star is the is the row vector which is the ith row of of X and X i

Y j star is a is a is a column vector that is the jth row of Y right. So, I am trying to

represent A ij by X i star dotted with Y star j right. So, this is an inner product.

And then we take the l 2 square loss and then we sum it up right. So, this we typically

sum it up, we could sum it up over all the observed entries right. Or we could in that case

the problem is not really is not really a nice linear algebraic problem, we have to resort to

optimization problems. We will sometimes do something simpler in the sense that will

forget about the missing entries, we will assume that the missing entries are filled in by

some constant or some let us say 0 or even and then will just sum this up over all over all

this over all the entries over all the i and j in the matrix A ok. 

So, now so now if the if the entry A ij happens to be missing right, then after we have

learned X and Y. So, first we so first we take the training set a the training values the set

of values that are provided to me in the matrix A ij and try to find out the X i and Y j that

that sort of minimize this quantity right. And we might even assume that that let us say

we might  even  assume and  for  that  we might  need  to  assume something  about  the

number of topics k right or we might resort to some kind of regularization. But once you

have  done  that,  then  in  order  to  predict  a  missing  entry  A ij  right,  I  will  take  the

corresponding dot product of the row i and the column j and that will be my prediction

for the entry ij right.

And if I want to take the and if I want to take the highest rated movie, highest potentially

rated movie for this user, then for the user I will calculate this for all possible j and I will

find out which is the j that is the maximum that the user has not seen. So, find out A j that

the user that is that is that the user has not seen right, find out the movie that the user has

not seen and that has the highest predicted value among all these among all such unseen

movies right, this is what we would do in the recommendation system. So, as you can see



that at the heart of it comes down to finding the solution of this optimization problem

right, A ij minus the product of two low rank matrices ok.

(Refer Slide Time: 10:09)

A similar application can be seen in modelling right. In topic modelling for instance we

have a set of documents, and each of the documents is being represented as a vector over

the set of words ok. And now what we want to say is that we want to understand what are

the underlying topics ok. So, again what we do is that we say that that suppose there are

k hidden topics, they may or may not be interpretable right.

And the way we find out what are these, what are the best key topics is by trying to

decompose the document word matrix M in terms of the product as a product of two low

rank matrices right. One of them is the document versus topics; the other is the topics

versus words ok. And what and what this kind of means is that each document this kind

of also posits the I mean also a series of the generative model here is something like that

each document right is I mean chooses each word is being distributed each topic has

been distributed as a as a distribution over words here.

So, this is a topic you can imagine that this is a distribution over words. Assume that this

W is suitably normalized and so on. And now each document first chooses a distribution

of a topics that this document says that maybe I am going to be a 80 percent at politics

and 20 percent about sports. And then it sort of mixes the corresponding topics right

according to these weights according to the weights out here right, and then and then it



generates the words and then it samples the words. So, again I am not going to the details

of the generative model, but the basic point that I want to strife, I want to put forward is

that that learning the topic distribution modelling the topic distribution in a in from a

from a document word corpus essentially boils down to doing a low rank often boils

down to doing a low rank factorization of the matrix M, which is the document word

matrix right.

And  depending  on  the  particular  application  that  whether  we  are  doing  a

recommendation system or whether we are doing a topic modelling the we might want to

put in different kind of constraints on the on the matrices. We might want to change the

last function in one case it might be it might be the l 2 I mean l 2 square the sum of

squares; in the other case it  might have to do something with some other divergence

right. In the topic modelling case for instance we typically put in non-negative, a non-

negative constraint on the matrices a and w right. So, this is typically falls on a non-

negative matrix factorization right.

(Refer Slide Time: 12:37)

So, one of that one of the matrix factorizations, so then so then where do we whether the

I mean where do we come in right where does the scalable data sense coming. Now, the

question is that how do we once we have come up with such a model of the data, how do

we do this matrix factorizations, because typically the documents the matrix that will be

given to you either the either the user movie matrix, the document word matrix will be



pretty large right. And it is it is very hard and doing matrix factorization is going to be a

non-trivial question ok.

So, one of the one of the starting points right in trying to do such matrix factorization is

actually  the  singular  value  decomposition  that  we  have  already  seen  right.  And  the

reason it sort of and why it does not satisfy a lot of the constraints that I mentioned

before for instance it has it does not satisfy non-negativity constraints it cannot deal with

missing values and so on and so forth. I mean it does not certain very nice properties

right.  So, missing values let me write down missing values here.  It cannot deal with

missing values ok. But it has a very nice property.

For instance, as you can see as we have mentioned that I mean once I write down the on

the matrix a as a product of as a product of three matrices u, sigma and v transpose right.

If I really want to get the optimal low rank approximation to the matrix A right in I mean

for instance in  terms of the Frobenius norm that  is  if  I  want  to solve this  particular

question right that I want to get the matrix X such that X is a rank at most k right and the

Frobenius norm that is the sum of sum of A ij A i minus X ij square and the summation

over ij square root this if you recall is the Frobenius norm that.

And if you want to minimize this norm, if you want to minimize this error under the

constraint that the X is of rank k rank at most k, then the optimal  such matrix X is

obtained  can  be  obtained  by  doing  the  from;  by  looking  at  the  singular  value

decomposition.  Essentially,  what  you  do  is  that  you  find  out  the  singular  value

decomposition  right  you keep only the  top k singular  values  and then you keep the

corresponding singular vectors on the left  and the right hand side that  gives you the

matrix A k.

And interestingly enough this also if you change this norm to be something like the two

norm right, which is the which is the spectral norm of the matrix of the matrix A minus X

the same matrix A k also serves as the optimal as the as a optimal solution of that ok. So,

because of this because of such nice reasons, singular value decomposition often starts as

a starting point of an act as a starting point for such for more complicated optimization

problems ok, for more complicated matrix factorization problems.
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So, let us try to look at try to do SVD in a I mean another problem, but the problem

behind SVD is that it is a it also has very high complexity.

(Refer Slide Time: 15:36)

Right in the sense that it sort of takes time order nd mean of nd right, which is like cubic

right mean of n, n and d, which is almost cubic in n ok. And the question is that can we

do faster right because this is not I mean given the size over data this we have to mention

is not scalable. So, for that let us to get an alternate look at SVD, right.



So, one way of looking at SVD is that let us look at only the only the matrix U right. So,

the matrix U right or for instance if I take the first k singular vectors of U, and call it U k

that forms a basis I mean U itself forms the basis of the column space of a right and

therefore, and U k forms the basis of the column space of A k which is the optimal rank

approximation right. So, therefore, one way of looking at the matrix A k is that it can be a

it can be written as U k times X right where X really you can write it either a sigma k V k

transpose or you can equivalently write it as X is U k transpose A right. Basically X is

then the projection of a onto the top k singular vectors U k. So, then so then I mean A k

equivalently can be written as U k, U k transpose A ok.

And this if you recall, it is actually projection matrix ok. So, the question now is that can

we find such a similar decomposition,  but more efficiently  right and we wish that it

should  written  approximately  at  least  optimality  properties  that  the  singular  value

decomposition has right. So, just to sort of refresh your memory, the optimal Frobenius

norm that is the optimal Frobenius error. And let us look at the Frobenius error for now is

the one that is achieved by A k that is given by a minus A k which is a minus U k, U k

transpose a Frobenius square which is given by the sum of the singular values from k

plus 1 to whatever the rank of the matrix is right from k plus 1 to d or 1 to r lets if r is the

rank of the matrix, how much the singular vales square ok.

(Refer Slide Time: 17:46)



So, what will do, so what will try to say is that we call I mean we will try to come up

with a decomposition that is typically known as the QB decomposition right. And this

decomposition will look like look as follows. That given a matrix a right. We will try to

come up with a matrix Q lets say A is n by d, we will try to come up with a matrix Q, and

Q will be n by k plus p and a matrix B and B will be k plus p by d right such that the

error by obtained by the error I mean then this.

So, first of all if you it should be easy to see that QB is a low rank approximation of the

matrix A right, because the rank of QB is not more than k plus p. And what we are going

to say is that the error a the Frobenius error A minus QB is not much more than the

optimal error A minus A k right its of that it is it is it is bounded by that right. All we

want to say that maybe the spectral error of A minus QB is not much more than the

spectral error A minus A k. You remember that these two are the optimal spectral and the

Frobenius errors right.

And furthermore we also want that this that the that the that the size of Q right is not

much more than k right. And when I mean I am writing it can to be k plus p for obvious

reasons that will come out later right, but basically I want this to be of the order of k

right. And we are looking at Q to be an orthogonal matrix right. So, think of Q as a

replacement for a U k right, which is the top k singular vectors of the matrix.

And once you have found out such a Q it should be fairly obvious that the optimal B to

be to be used is really Q transpose a right. So, therefore, this QB decomposition of the

matrix, we are also writing it as QQ transpose A right, which is essentially the projection

of A onto the space spanned by the columns of Q. Instead of U k, we are instead of

projecting it on the space spanned by the columns of U k; we are projecting it on the

space column spanned by the columns of Q right. And we want that errors to be not to

blow up from what it was before. 
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A different  decomposition  and  one  that  we  will  look  at  later  is  known  as  the  CX

decomposition  right.  Here what will  ask is  that  instead of finding out  an orthogonal

matrix Q can I actually find out a set of column C right. So, So, these columns, so these

so these columns that I that I use in C should actually come from the columns of A right

and still can I approximate the Frobenius the optimal Frobenius error while making while

choosing only of the order of k columns. And it is not even obvious that this exists as of

now right. It is not it is not even obvious you can choose C columns from A and still

retain the optimal Frobenius norm 

However, we will show that in sort of coming lectures, we will show that it exists; and

furthermore  it  is  actually  pretty  useful  this  is  actually  pretty  useful  decomposition

because sometimes the columns of C right they have special meaning right. For instance

remember that when we had the when we had the document I mean let us say that the

user movie matrix right. Now, now the columns of C are actually movies right. And now

if I am finding out I mean a genre decomposition in terms of in terms of by actually

choosing movies then these movies are potentially good representations of each other

genres. So, the interpretability of the matrix factorization comes back into the picture we

that would actually lost when trying to do the singular value decomposition ok.
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So,  we will  come to  this  later.  So,  here  is  a  prototype  algorithm for  doing the  QB

decomposition that is fairly in intuitive, but very interesting. So, what we say is that that

we have a n by d matrix a right. Let us come with a come up with a d by k plus p matrix

omega right. And this is a random matrix. So, how are we generating a random matrix,

we will come to this later, but this is a random matrix. So, first we look at the matrix Y

which is a multiplied multiplication of A times omega, so that means, Y is of size n by k

plus p right which is a pretty thin matrix right.

So, now, doing matrix factorization of Y, it is actually easier right, because it is a small

because it is a smaller matrix. So, what will do is that we will try to get the orthogonal

basis for the column space of Y right. We will try to get the base orthogonal basis for the

column space  of Y and we call  that  Q right.  And then we return the pair  Q and Q

transpose A right. So, Q is my sort of this Q is my candidate for the up for the close to

optimal  basis  for  a  rank  A decomposition  of  A,  and  therefore,  Q  transpose  A is  a

projection of a onto that basis right. So, this is the target, this is my B the Q transpose A

is my B ok.
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So, why does this work, what is a intuition?. So, to get the intuition of this let us look at a

setting, when let us say A is of size n by d so A is of size n by d, but suppose A is of size

A has rank k right. So, the rank of A is k which is less than both n and d right. So,

imagine let me call this, this, this shaded area the column space of A, which is the space

of than the span of the columns of A. So, suppose omega 1 to omega k are random

vectors right in d dimension right. So, because it is a random vectors in d dimension

chosen in I mean according to whatever reasonable randomness, reasonable I mean d

dimensions randomness we will come to that later.

 The vectors they are likely to be in general position right that none of them will be a

linear combination of the other ones. What we can further saying is that vectors A omega

1 to A omega k right that is if we multiply each of these omegas by A these are also in

general position first of all right by using randomness with very high likelihood with

very high probability that they are in general position. Furthermore we also know that

they are in the whole line the column space of A right. So, the so the vectors A omega 1,

A omega 2 and up to a omega k or lie in the column space of A.
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So, therefore, if I find out a basis [noise if I find out the orthogonal basis of A omega 1 to

A omega k right that is also a basis for the column space of A right; and I am calling that

Q. So, any orthogonal basis of A omega 1 to A omega k is also a basis for the column

space of A ok. So, then in this case it clearly works right that is if the in the rank of A is

k, then what then the algorithm that I was proposing clearly works.

(Refer Slide Time: 24:32)

What happens at the rank of A is not k right. So, imagine that the rank of A is I mean is

let us say I mean either the mean of n and d, but suppose A has the following structure



that A is a rank A matrix plus some E right and think of E as a small perturbation. So, E

is full rank, but let us say that the norm of E whatever suitable norm and what norm is

appropriate will I mean actually in order to see that you have to do the entire proof which

you are not doing right now we are just giving the intuition. So, let us say E is the full

rank matrix, but there is a strong low rank structure this is what you mean. 

So, in this case also we take the vectors omega 1 to omega k, and we multiply this by A

right.  So, multiplying the vectors omega 1 to omega k by A really  it  is  the same as

multiplying taking their products with respect to A k. So, I look at A k omega I plus a

perturbation E omega i right. So, what can happen now right. So, now, so now, suppose

this is the column space of the instead of being a column space of A, this is the column

space of the of A k ok. So, what is happening is that A k is the part A k omega i lies in

this I mean again for A k each of the each of the vectors A k omega i, we can again still

argue  that  they  are  in  general  position  in  a  column  space  of  A k.  However,  this

perturbation can take some of these vectors a little bit outside right.

And therefore, it is possible that by taking I mean therefore it is possible that if I look at

the I mean if I look at the basis of A omega 1 to A omega k right maybe it does not

completely capture the column the basis for A k right, because of this perturbation E

right. But what we can also show is that I mean if I take a little bit more right there

instead of k if I take k plus p vectors right, then the then this chance the then the chance

that the vectors A omega i does not span the column space of A k right is very small

right. And this can be made and this can be been mathematical except that it is going to

take its take little bit of non trivial mathematics using matrix perturbation theory and so

on.

But we can say that, but this is really the intuitive claim that what you can claim is that if

the perturbation E is small with respect to the with the norm of A k right then the chance

that then with very good chance then there is a very good chance that if you take k plus p

right, the span of the vectors A I mean A omega 1 and until A omega k plus p spans the

column space of A k.
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So and that will and that will again come back to my and then my previous argument

again holds right. So, what is this random matrix? I mean talking about a random matrix

right, omega. So, it turns out that most random matrix a lot of random matrix is work.

Essentially any matrix omega that satisfies FJLT property, for instance if you fill it up by

N 0, 1, or plus minus 1 or FJLT or even sparse JL. Actually for sparse JL you have to be

a little bit careful in terms of the in terms of the I mean the sparsity as well as the size of

omega, but basically I mean N 0, 1, plus minus 1, FJLT, it really works right.

The theoretical bounds are really the same for most of them more or less the same up to

log factors and so on. However, these differ in terms of the numerical stability issues

which means that in practice, the practical performance is differs significantly right. And

I am really for all for most practical implementations, we use omega as of now, we use

omega where every entry is coming from N 0 1 right. This is not been enough research

on the on the other kinds of and the projection matrices in terms of empirical results ok.
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So, what is the theoretical guarantee, again we are not going to go into the details of the

guarantee, but here is essentially the claim that we can say. What we can say that if I look

at the Frobenius norm bound of A minus QB right. Remember that this Frobenius norm

bound is at least A minus A k Frobenius I mean A minus A k Frobenius. And we can

show that it is not much more than this A minus A k Frobenius that is it is at most 1 plus

k by p minus 1 A minus A k Frobenius.

And we can so show similar one for the L 2 norm error. There are a few different variants

of the bound that you can see up look up from the references other at the end of the

lecture. The qualitative takeaway that you should take from this from that you should

learn from this particular from this particular bound is that is that we need p to be a small

constant right. If I take p to be a small constant, in practice about 5 or 10 is enough, then

you get  a  very good approximation  to  that  to  the Frobenius  norm bound right.  And

although this  a stated this in terms of the expectation we can easily apply Markov’s

inequalities and other things right.
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So, so in fact, there is I mean we can we can modify this algorithm in order to in order to

sort of give a better bound. So, let me talk about the modified algorithm in the next slide

so just in the next lecture.

(Refer Slide Time: 29:55)

Just to  give some references  most of  this  lecture  was from these lecture notes  from

randomized numerical linear algebra by Petros and Mahoney. There is also very nice

survey finding structure with randomness by Halko Martinsson and Tropp. And if you

are really looking for practical guides with MATLAB code, there is this very nice article



by a Shushen Wang that actually provides you MATLAB code for thought of the matrix

factorization and.

Thank you. 


