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Welcome to the course on Scalable Data Science. Today's lecture is on Introduction to

Randomized Numerical Linear Algebra. I am Anirban, I am from IIT Gandhinagar.
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So,  numerical  linear  algebra  ok;  if  you are  familiar  with  the  machine  learning,  you

probably know that a large fraction of machine learning problems essentially boil down

to solving a linear algebraic optimization problem right. Any kind of model that you are

learning right,  whether  it  be a very simple logistic  regression model  or  it  be a  very

complicated deep neural network model, it is you are essentially solving a problem an

optimization problem in some linear algebra space.

So, in fact there are specific types of linear algebraic optimizations that are not to be very

useful in specific branches of machine learning. The entire branch of recommendation

systems right is really all about matrix factorization ok. Under certain constraints, under

assuming certain priors, by sort of redefining the last  function,  it  is  all  about matrix

factorization in various forms right.



Ranking computing page rank is really just an eigenvector calculation right. You redefine

the  transition  matrix  in  various  forms,  and  then  you  calculate  the  corresponding

eigenvectors. And this is also true for specific kinds of let us say community detection or

clustering right. These are these all boil down to certain types of eigenvector calculations

eigenvalue  calculations  right.  And  as  I  mentioned  that  a  law  I  mean  basically  any

supervised model is doing regression with an appropriate loss it is (Refer Time: 01:59)

regression with an appropriate loss function.

So, such matrices the matrices that, we sort of solve the linear algebra problems in are

typically big right, because of the I mean, and this is what the big of the big data really

comes in right. If you imagine that, you are solving a recommendation system at the

Amazon prime or at the Amazon prime level or at the Netflix level, we have like millions

of  movies,  and we have  millions  of  users,  and we have  hundreds  and thousands of

movies at least millions of users ok. So, you have a huge matrix, which is also very

sparse.

And furthermore these methods are also often computation expensive,  you have seen

SVD the singular validity decomposition right that takes time order n d times n plus d,

which is at least quadratic right. And, so I mean n d times in n d order n d times mean of

n d right something like this ok, which is fairly large. And it is not really realistic for any

for any practical data set. There in hundreds and thousands, and these are the of the order

of millions let us say ok.
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So, the idea behind randomized numerical linear algebra is this essential sort of intuition

that,  the concepts in ran the certain concepts in randomization for instance sampling

being able to sample from the data, being able to sketch from the data allows us to build

algorithms that, can be efficient much more efficient, and can actually scale to massive

data. But in order to do so you have to give in certain things.

Number 1, you cannot hope for exact solutions right. Because an and I mean, because

once you sample right I mean, and you are trying to solve the problem on the resulting

data, you cannot hope for a solution that is exactly I mean the solution, that is exactly

optimal for the original data right. You have to be you have to deal with approximate

solutions  right.  But  what  will  give  you  is  a  specific  quality  control  parameters,  for

instance, we will be able to tell you that ok, this is not more than 1 percent far off from

the actual solution.

We will also tell you right I mean a confidence parameter in the sense, that given the

algorithm right. We will be able to tell you ok, that this algorithm is supposed to succeed

with only 90 percent chance, which means the 10 percent of the cases I might return you

something bad, but if it is a fact if it is I mean mostly in reality it is not going to be really

bad right.  It  is  going to  be  but  the  theoretical  guarantee  is  only  hold  with  the  high

confidence.  And in a lot  of sense is  fine,  because once you are in machine  learning

applications, it is not really I mean we are not really looking for the actual optimum in

any way right, because I mean if it is a classifier, and we were doing I mean fine it is we

do not really need to get to an actual optimal ok.



 (Refer Slide Time: 04:48)

So, what are the basic thing in randomized numerical linear algebra? The basic theme is

that is a following that, we think about representing the data as a matrix, and now we are

doing operations on this matrix. Maybe we are doing a matrix factorization, maybe we

are sort of solving a regression problem using this matrix, whatever right. What will see

is that ok, we will sort of to choose specific rows or specific columns of this matrix or

maybe a combination of both. And this will give me a smaller matrix somehow it will

give me a smaller matrix right. And then, we will sort of then we will solve the problem

on the smaller matrix right.

So, we have to be able to solve it in a way, so that we can say that there is a resulting

solution is  a good solution with a original  problem ok. So, sometimes we live in of

course, step (Refer Time: 05:35) and said that ok. We are not even choosing individual

rows and columns of the matrix. What we are doing is that, maybe we are sort of maybe

we are summarizing a bunch of rows, using a single row or maybe by summarizing a

bunch of columns using a single column right. Rating a random combinations and then,

we are creating a new matrix. So, we are creating a shorter matrix (Refer Time: 05:55)

batch  is  sampling  one by doing random combinations  right.  This  is  essentially  what

random projections just does right; if you remember, if you sort of think about it, so and

then, we solve the problem on the resulting matrix ok.



(Refer Slide Time: 06:05)

So, in this particular lecture, we will see a very simple, but very sort of clever example of

such a algorithm right. So, we have all seen the we have all seen in our basic algorithms

course that, the problem of matrix multiplication right. We even do it before we done the

algorithm course. For instance, that suppose we that suppose, we are we given 2 matrices

A which is of size m by n right and B which is of size n by p, and we have to find out the

product of the of these 2 matrices A times B right.

So, the naive algorithm takes time order m n p right, because just two I mean for every if

you take every row of A, you take every column of B and that takes and that takes order

n right. And you have to consider m times p such combinations right, because every row

goes with every column right. So, and thus no cheating around this, unless the matrices

have specific structure right. So, here is a question can I find, if we are not interested in

the exact solution, but in an approximate solution, can I find an approximate solution

faster  ok.  So,  for  this  we have  to  define  that  what  do we mean by an  approximate

solution first of all. And Secondly, how can you even think about doing this faster right.

And this is where our first introduction into using randomization will be ok.



(Refer Slide Time: 07:42)

So, here is a title different way of looking at the of looking at the matrix multiplication,

and that will  come to use right.  Remember until,  now that we have been looking at

matrix multiplication as sort of taking every row of A and choosing a column of B right

and multiplying it to get an entry right. So, basically A B i J is summation over k A i k B

k j right. This is a row of A this is the under odd product of the ith row with the j th

column. So, but this view is not very useful for us. The view that is useful for us is a little

unintuitive, but once you get used to it is surprisingly useful right. What we see is that

right that, we can also view the product A B as a sum of rank one matrices.

So, what are these rank one matrices? So suppose, so think of the columns of A right and

think of the rows of B right, the columns A and the rows of B. So, now, if you think

about it,  right I mean A is nothing really, but A collection of its columns and B is a

collection of its rows right. So, the dot product A B can also be written as you take the

outer product of the first column of A, let me write that at A star 1 and the first row of B

write as a 1 star. So, I am using MATLAB type notation right.

So, A star i will be the ith column and A i star will be the ith row. This is what MATLAB

uses and I find this clear enough. So, I can write I can also write A B as the product of

the as a sum of as a sum of rank 1 matrices each of them is formed by the outer product

of a column of A and that row of B.
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So, this is A star 1 with B 1 star A star 2 with B 2 star, and A star 3 with B 3 star, so

basically as a sum of n rank one matrices. Each of them is an outer product of 2 of a row

and of a column of n row of B ok. So, now, our sampling idea comes into picture. Now,

what we say is that, if I were calculating this exactly, I would have to calculate the sum

of n terms ok. Suppose I am not interested in calculating suppose I am interested only in

approximating. It not interested in calculating it exactly. How about we do this, suppose

we assign a probability to every into each of these terms right. 

Suppose p 1 is the probability of the first one, p 2 is the probability of the second one p p

2 is a let us I mean let us consider these weights for now. Weights are probabilities that

ripping having assign p 3 is the probability there that is going to assign the third one and

so on and so forth. So, summation p i equals to 1. We will see how to define this p i’s,

but suppose you had this pi’s, then here is what I want to do right. So, I am going to

sample (Refer Time: 10:43) times ok. And each time I sample I am going to pick one of

these rank 1 matrices ok. 

So, the so for each of the c samples we pick the ith rank 1 matrix with probability p i

right with replacement. And then, you normalize the matrix with the lower p i right. So,

now, I have a sum of c terms right. And then we basically just average that by 1 by c

average that, I mean divide that by c and this is my estimator right. So, basically this is

my this is my this is the estimate of of A times B, that I will return ok.



(Refer Slide Time: 11:34)

So, we will sort of see a little more I mean example of this, that supposing let us kind of

go over it in a little bit details that, supposing a was a 1, a 2, a 3, a 4, right. These are the

columns of a and b was let us say b 1, b 2 b 3, b 4 right. So, now actually let me stick to

the same notation. So, let me write b as b 1 transpose, b 2 transpose, b 4 transpose. So,

when I write I mean a i a i that is a column that is a column vector right, which is what

which is like when I am writing down A row of B I am I am writing it as b i transpose,

this is a row vector ok. So, this is now equal to summation a i b i transpose ok.

This is this is what it is basically a i is A star i and b is bi bi transpose is B i star ok,. So,

what is happening here what is happening here is, now is now suppose we are choosing

three terms c equal to 3 ok. Suppose, suppose we define p 1, p 2, p 3, p 4 right. So, now,

what we will do is that for c equal to 1 right. I mean I will take a 4 headed dice right. So,

the 4 headed dice it will turn out to be it will sort of evaluate to, so the random variable

can take value 1 with probability p 1 with value it can take value 2 with probability p 2,

value 3 with probability p 3, value 4 with probability p 4. So, I try toss this dice right.

And let us say that the index that comes up is 2. So, for c equal to 1 I take a 2 b 2

transpose right. And I divide that by 1 by p 2.

So, I sort of do this index choosing again for c equal to 3 for c equal to 2 right. So, let us

say  it  turns  out  to  be,  now  the  random  variable  says  is  that  I  mean  based  on  the

probabilities p 1, p 2, p 3, p 4, I will give you the index 1. So, I take a 1, b 1 transpose I



normalize that, by p 1 by p 1 right. And let us say I do it one more time, and it again

turns out to b 1 c equal to 3. So, b 1 b 1 transpose 1 by p 1 right. So, this is my final sum.

So, this is what I returned, and I normalize this by 1 by c ok. This is my estimator of a

times b. So, it happened with replay with replacement, and then, I sort of did it c times.
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So, an equivalent way of looking at the algorithm is as follows right that from the matrix

A and the matrix B we create 2 matrices C in R. So, what is C in R 2, I mean a column of

C right is really picked from a column of A ok. So, think of the choice that we were

doing right that for the for t equal to 1 to c right. We were choosing an index from 1 to n

with probability p 1 to p n right. So, now that I mean what you can also says that that

choice of index let us say for t equal to 1.

We choose column number 10, we choose we choose we choose i equal to 10, which

means that you take the column number 10 of A A and the row number 10 of B right.

And put it in position 1 of C and position 1 of R. Put it as a first column of C and the first

row of R right. Similarly, for t equal to 2 right. If the random variable say is that you

should be choosing column number 100, then you take the hundredth column 100 of A,

then you take the 100 column number 100 of A, and the column number and the role

number 100 of B right.

And then, and then put it in the in the second column I mean put the put the column of A

in the column of C, and put the row of B in the row of R ok. So, basically and then and



then,  it  is  not  very  hard  to  see  that  the  I  mean  and  of  course,  do  appropriate

normalizations right. And we will see how will do the normalizations in a little bit more,

but, but once you define C in R and you add in the normalization add in you do the

scaling correctly right. And then, you sort of do a 1 by c right, then the product C R is

what  we  will  is  what  we  will  sort  of  is  what  we  have  been  looking  at  the,  so  the

summation that we are looking at is really nothing but this product of the 2 matrices t

times R. Now, let us going little bit details about how C is being normalized R is being

normalized and so on right.

(Refer Slide Time: 16:19)

So, the choice 1 is, so first let us sort of see is that how do we choose the probabilities

right sort of so here is the first obvious choice. Then do not try to do anything smart

right. Make all the p i is 1 by n right. So, that means, that at that at every point for every

for every for every t equal 1 to C, I mean you choose you I mean uniformly one of the

columns of A, and the corresponding row of B. So, remember that the choice in A and

the choice in B have to be locked right. In the sense that if you if you choose the ith

column of A, you have to choose the ith row of B we make these two choices together,

and then you put it and then, you put it in put them in C in R ok.

So, we will sort of see how to do this in little more details, now. So, what we really want

right. So, what we want is that the product A B should approximately equal the product C

R. And we will again define what do we mean by approximate right. So, before we even



before we even sort of a go to matrices, let us imagine that we had n numbers right. And

just to keep sort of I mean similarity with the with a matrix setting that we have sort of

written, I call the first number to be to be a 1 1.

So, let us say x 1 equal to a 1 b 1, x 2 equal to a 2 b 2, and x n equal to a n b n right, I

mean a n, b n is a single number. And we want to estimate the sum of this summation a i

b i. So, summation x i is equal to summation a i b i this is what we on estimate. Now, we

want to say is that that suppose we want to do a uniform choice right that uniformly

choose I mean so choose C numbers out of out of 1 to n right.

(Refer Slide Time: 18:04)

And for each number choose 1 from 1 of the numbers I mean x i, which is a i, b i. And

then and then just normalize it by n multiplied I mean normalize it I mean basically just

choose summation x i and then divide by c multiplied by n ok, where x belongs to the i

belongs to the sample. x the j th sample let me write it this way the j th sample is j i for j

belonging to the sample ok. So, now, this is something that we have seen.

So, how can I mean does any (Refer Time: 18:42) choice work well here? Well,  you

could see that not really right, because it could happen that one of the excise is very big

that  supposing one  of  the  exercise  is  1  and everything  else  is  basically  0.  So,  then

summation a i, b i is 1 right, but because we are doing uniformly random choice, because

you are not even looking at the values, we could be ending up we could end up choosing

the 0 value over and over again. And therefore, what we will get is is 0 right. I mean at



the end, because all our sample is going to be 0 right. And so and so that is it is not it is

we  can  take  this  intuition  you  can  formalize  it  and  say  that  choosing  uniformly

essentially has very high variance, because some of the a i, b i could be very large. So,

what is the better way of choosing it.

Well, at least in this case a better way of choosing it is according to the value right, but if

you happen to choose the I mean the ith value with the ith I mean, if you happen to

choose i with probability that is proportional to x i right, then we will actually get a good

estimate of the sum right, that is if the probability is proportional to a i b i, then we will

get a good estimate of the sum. Now, we are starting to get intuition about what we

should do in the matrix case right.
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So, in the matrix case right the right sort of probabilities happen to be happen to be this

right, that you take the k so, A star i is really the l 2 norm of the of the of the ith column

of A and B star b i star is the l 2 norm of the ith row of p right. So, we define p i to be

proportional to the product of the of the of the l 2 norm of i of the l 2 norm of A star i and

the l 2 norm of B star b i star right. And then this denominator is really is essentially just

normalization  right,  because  we  because  we  normalize  we  have  to  ensure  that  that

summation p i equal to 1 ok. And here is what we do right that. For t equal to 1 to C, we

choose the jth column of A and jth row of B with probability p j t.



And if I happen to choose this right, then I normalize it by this quantity A star j t is what

my job A is what I choose. And then I normalize it by square root c times p j t. And then I

sort of so I include this normalized column in C and then, I include this  normalized

column in R right. So, why did the square root come in, because if you remember that, C

in R, I  will  going to be multiplied  to  each other  right.  And therefore,  and I  mean I

essentially wanted to normalize the sum only by 1 over p j t and then outside by 1 over C

right, but now, because I am distributing the normalization and putting it some in C and

some  in  R  right.  I  am  normalizing  each  of  them  by  the  square  root  of  the  final

normalizer. Basically, it is that simple ok.

(Refer Slide Time: 21:43)

So, then so this is what it is right and then here I mean here is either way of looking at it

from the matrix notation right. What if what we could also say is that that let us create a

sampling matrix, sampling matrix of size n by c. So, this sampling matrix what it will

have it  is of size n by c.  What it  will have is that for every column, it has a single

nonzero entry, and that nonzero entry will turn out to be j t at the position j t t right. And

it will have 1 by square roots C times p j t. So, basically what you could say is that in

order to decide where to put the nonzero.

We have the probabilities we have the probability is p 1 to p n, in order to decide the

where to put the nonzero entry in the in the in the tth in the tth column right. You toss

this n headed dice right, so that you get i with probability p i and if you get or rather, so



that you get the j t with probability pjt. And if you happen to get j t right, then you sort of

put in a normalizer of 1 over square root put in 1 over the value, 1 over square root C

times p j t in the in the position j t comma t right. And then put in zeros everywhere else

in the in this particular column.

So, this is my matrix S, now again it is not very hard for you to solve sort of C is that the

C that, we defined in the algorithm before is really the matrix A times S. And R that we

defined is really the matrix S transpose times p. And therefore, we what we can also look

at is that we create this matrix  S and then,  we calculate  we essentially calculate  our

project the 2 matrices A and B using this matrix S. We only have to make sure that the

matrix S is really the sampling a projection matrix is the same for both A and B.
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So, now what are some guarantees ok. So, let us look at the ijth entry of C R right. So,

the ijth entry of C R right is really a sum right. So, it is really A sum of C terms right.

And remember that for the tth term we had chosen the jth the jth column of A and jth row

of B. So, therefore the tth term right will really be a i j t times b j t j divided p j t right.

And this the entire thing 1 get divided by 1 over c ok. So, this is and here j t are the

random variables of course, ok. So, it is easy to see that the expectation of C R i j is

really a b i j right, because once we start taking I mean once we, because if I take the

expectation of expectation of C R i j right, because each of the t choices is i i d right I

mean all these have the same expectation. And therefore, I could as well calculate the



expectation of A i t A I j t and b j t j divided by p j t right. And then there is a 1 by c and

then, there is a c times this and this c and this c cancels out. So, this the second c comes,

because the summation every term in the summation has the same expectation ok.

 (Refer Slide Time: 25:26)

So, now what is this quantity let me just do a sort of quick calculation of this A i j t B j t j

divided by p j  t  right.  So,  we know that this  value can take one of n possible.  This

random variable can take n of impossible values right. And the n possible values are i

equal to 1 to n. It can take value let me actually call it k equal to 1 to n A i k B k j divided

by p k. So, this value happens when the column k of A and the and the corresponding

row of B is chosen, and that is chosen with probability p k right.

So, this is the value chose taken by there is the value that the random variable assumes is

the probability of that right. And this and this cancels out which is the exact, which is

exactly the point of this normalization and equal to summation k equal to 1 to n A i k

times B k j right, which is equal to A B i j right. So, then what we then see is that coming

back here, is that the C R I j has exactly the right expectation right.

Again you can do this calculation not very hard to say not only hard to do is that, the

variance of C R is this quantity which is one over C times the summation of the of the

product of the squares of A i k and B k j divided by p k minus the minus this quantity this

is one by C B i j square. So, one thing to notice that I mean if nothing else what you see

is that if c increases by the variance decreases so, just to be expected.
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So, then we have been talking about AB being approximately equal to C R right. What

we really want is that one way of measuring that is Frobenius norm. There are other

ways of measuring it like the spectral norm of the of A B minus C R, but for, now let us

concentrate on the Frobenius norm, and we want to bound A B minus C R Frobenius

norm ok. So, again I mean A B minus C R Frobenius norm squared the expectation of

that is the same as writing the expectation of A B minus I replaced C by A I replace R by

S transpose B Frobenius norm square right.

So, again I mean coming back from here, because Frobenius norm Frobenius norm of a

matrix is really the summation of x i j square right. So, therefore, the expectation of this

is really the expectation of this and, the each x i j, because x i j is a random variable, and

the expectation of the I mean in this case x equal to A B minus C R in this case the

expectation of I mean x i j squared is really just the variance of C R C R i j the variance

of the of the ijth entry of C R, which is what we have calculated right. And just plugging

that that back in if once you finish the calculation what you can say is that expected

value of A B minus C R Frobenius square is at most 1 by C Frobenius square of a times

Frobenius  square  of  B.  And  we  have  a  bound  on  the  expectation  of  the  expected

Frobenian the expected error.
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Now, now we can do multiple, now what we can do is that we can use the I mean we

know  that  this  is  nonnegative  (Refer  Time:  28:36)  variable.  Therefore,  we  can  use

Markov’s inequality to say that the expectation is small. And if the expectation is small,

the actual random variable is not going to be very much larger than its expectation with

at least some probability with constant probability. Let us, say it is not going to cross 10

times expectation with at most 1 I mean with probability more than one-tenth ok. We can

also prove better bounds using Chernoff style inequalities right.

In fact, what we can also say is that, expected value of a we can take away the square this

square is  not  that  important  Frobenius is  less than equal  to using Jensen's  inequality

expectation of A B minus C R Frobenius square right. This is Jensen and then, you plug

in this quality right, the quantity that you have been here ok.
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So, a special I will just before ending I just mentioned a special case that going to be

useful for us.  So,  one special  case is,  when B equal to A transpose, in this  case the

sampling probabilities turned out to be very simple, it is just an it is just the squared

norm of  the  of  the  ith  column  right.  And  the  denominator  turns  out  to  be  just  the

Frobenius norm square of A right. 

And the and the bound becomes A transpose minus C C transpose Frobenius is less than

1 by square root C Frobenius norm of A square right, because the Frobenius norm of A

and Frobenius norm of B are the same right. And in fact, it turns out that in this case this

Frobenius instead of the Frobenius norm bound, we can actually get a spectral bound

right, which is which is a better bound.

 (Refer Slide Time: 30:02)



Another side variant that, we will see is that that, we were talking about this the sampling

matrix S right. We were designing this sampling matrix using the I mean using the we

will designed this matrix S using this sampling idea. We could also design this matrix S

using a sketching idea right. In the sense that, we I mean instead of saying that S is this

represents a sampling notion that every column has only one only nonnegative entry. We

could say that S represents A j A j l matrix, which is data oblivious actually.

Now, right, and it could be either the dense JL, it could be the a it could have N 0 1 an so

on and so on and so. And in that case also I mean it is easy to get a bound on a transpose

minus CC transpose Frobenius ok.
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So, let us just look at the running time using a sampling matrix right. Being a I mean

doing the sampling takes time m n plus n p right, because we have to do a linear scan for

each of the for each of this for each of the and time C actually. Well, m n plus I mean just

to calculate the probabilities you have to do a linear scan over the two matrices, then we

have to I mean to choose C samples. And then, so maybe that takes time n c and plus m c

p is the time for doing the smaller matrix multiplications. And you get a similar boundary

using the FJLT, please think about it yourself. You should note that this is much less than

the order m n p that we were saying initially right which is for line matrix multiplication.
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So, just to summarize what we will see in the next couple of lectures is that including

this is a randomization approximation is a very powerful tool in numerical linear algebra.

We have seen two applications of this already. If you remember, we have seen the this

question of approximating the principal component analysis using random projections.

We have also in this lecture, we also saw approximating matrix multiplication, and this

will  be  the  basis  of  many  results.  You  also  pointed  out  the  interchangeable  role  of

sampling and sketching. 
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So, the reference for this is this lecture notes by Michael Mahoney and Petros Drineas on

that is an archive freely available, please look at this.

Thank you.


