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Hello everybody and welcome to the course of Scalable Data Science I am Anirban and I

am from Gandhinagar. So,  today we will  be talking  about  two different,  but  related

algorithms;  the  first  will  be  about  an  application  of  the  fast  Johnson  Lindenstrauss

transformation to locality sensitive hashing ok. So, here is the first slide for us.

(Refer Slide Time: 00:46)

So,  just  to  recall  Johnson  Lindenstrauss  transformation  was  this  particular  linear

mapping that preserves the distances between any two pairs of points. In the sense that if

we are given a set of points x 1 to x n right. And if I come up with a with a mapping A

that let us say is either created out of independent Gaussian entries or according to the

first Johnson Lindenstrauss transformation which will recap in a moment right. And it is

A is of appropriate size for instance; A is of size at least some constant by epsilon square

log n right for a suitable constant which happens to be pretty small in practice. And now,

if I get image of each of the points x i by multiplying it by A right and the xis lie in d

dimension right. So, A is of size k by d in order for us to be able to do the multiplication.



Then the Johnson Lindenstrauss lemma claims start  with a very high probability, the

distance between the l 2 norm between Ax i and Ax j will lie between within a 1 plus

minus epsilon factor of the distance between x i and x j. So, the lemma as it is stated here

is about is only about existence, but as we have seen we can claim this that this will

happen that for a particular once for a particular random sample of a this happens with a

very high probability.

(Refer Slide Time: 02:15)

So, just to recap again what is the time taken for projection? The time taken for if the

random matrix are selected out of independent Gaussian entries or are from independent

plus minus 1s and 0s the time taken for projection is order k d, which is basically the

time taken to multiply k by d matrix with the vector of length t right. And remember that

this k was at least 1 by epsilon square right in fact, it had the log n factor or the log 1 by

delta factor depending on what version, I mean whether you want it to hold for all pairs

with high probability or whether you want to hold for a single for every single one with

probability 1 minus delta ok.

So, basically the success probability has to come in to the log. The other construction

that we saw was this fast Johnson Lindenstrauss transformation and here I have some

correction to make for the previous video what we had mentioned is that the fast Johnson

Lindenstrauss transformation has three components right. The first is the plus minus 1



diagonal matrix right, where every entry of d is generated from a random coin toss that

gives you plus with probability half and minus one with probability half.

Next comes the Hadamard matrix right and we had defined the Hadamard matrix in the

form that the H 2 is 1 1 1 minus 1 right, H 4 is obtained by doing H 2 H 2 H 2 and minus

H 2 right. But, we had forgotten out here was the normalization right because, if you had

been paying attention that we always need I mean in the original Johnson Lindenstrauss

we always need to normalize.  So,  that in expectation it  becomes a matrix so,  that it

basically preserves the norm in expectation right so, it is unbiased the in terms of the l 2

square norm.

So,  that  is  why  we what  we want  to  do  is  instead  of  take  this  particular  H which

essentially is the unnormalized Hadamard matrix and then do 1 over square root d times

H right. This is what we call the Hadamard matrix, this is traditionally what is known as

a Hadamard matrix that you have you create it using this recursive definition and then

you normalize it. So, that the length of every column is exactly 1 ok the l 2 length of

every column is exactly 1 ok.

So, what we will do is when I now onwards refer to the Hadamard matrix it will refer to

this normalized Hadamard form and then we would not really keep this. We would not

really maintain we would not really keep this over square root d hanging around, but you

have to understand that this is the normalized version of the Hadamard matrix ok. And

finally, so, the final component was this was this P which was a sparse Gaussian matrix

ok. And so, the time taken was given by order d log d which is the time taken to calculate

the Hadamard transformation plus the time taken to  calculate  to multiply P with the

dense vector that results from HDx and that time is k log n d because P is sparse, P has

small number of nonzero entries ok.
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So, and the densification claim that we had just to remember that again recall that here H

refers to the normalized Hadamard matrix. The densification claim that we have is that

for any fixed x right that satisfies l 2 norm 1; if you look at the maximum coordinate of

HDx that  is  that  I  mean  will  the  average  coordinate  is  1  over  square  root  d  right.

Because, there are d coordinates and they and they all sum up to 2 square 2 square I

mean summation x i square equal to 1 right.

And then and then d of them say for the therefore, in some sense average coordinate 1

over square root d what this is saying is that the maximum coordinate is more is not

much bigger than this, the maximum coordinate is log n d by square root d right.

For this implies is that the vector HDx is basically dense right, because, if the maximum

coordinate is this d by log square root n d which means that there has to be a significant

number of nonzeros right. In some sense there has to be I mean d by log n d nonzero

entries right because, they have to sum up to 1. So, and this you had obtained we had

mentioned although we had not seen the proof as this can be obtained by some Chernoff

style tail inequalities fine.
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Let us so, what we had seen is that calculating PHDx takes time order d plus k log nd.

Now the question is that let us see an application of this and we will see an application in

very interestingly in something that we have covered before in locality sensitive hashing

ok.
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Just to recall what locality sensitive hashing and let us say that we right now we have

been locality sensitive hashing for the l 2 distance ok. So, let us see that suggests to recall

what we had done is that the ith index of a particular hash table, the I mean one hash

table capital H, let us say we are talking about only creating only one hash table, one

hash table is created by a k a tuple h 1 to h k right.

And let us talk about creating let us say the ith index of this the ith value here of this

tuple. So, h i so, to create hi of x we first choose a random vector vi right, we take the dot

product of the projection of x with vi the dot product of x with v i right. We add a shift b

i,  where  b  i  is  a  uniform the  chosen bit  in  the  range  from 0  to  w for  some hyper

parameter w and then we divide it by w and then we return take the floor of this.

So, in some sense what we are returning is this and is the index of this, we are we have

chopped off the, we have chopped off the picture the projection into these buckets of

length w right. And then b i you can think of as giving a random shift to this chopping

off right, as in we do not really need to start at 0, we sort of add a random shift of b i and

then start the chopping off. And then we return the index of the bucket into which this

particular projection of x falls into.
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So, and we want and so, the time taken to calculate each of all the k hash indices is k

times d because, the time taken with algorithm one of these indices is d right. So, and

therefore, for I mean for all the L buckets right the time taken is k d L. So, can we reduce

this right because if you remember I mean reducing this time so, what is the query time?

The query time for LSH has 2 components right.

 The query time for LSH has in component that says that you have to calculate all the

hash functions, it also is a component that says that to calculate all the hash functions and

find out the bucket that the query falls into you then get to go into the buckets and find

out the candidates and compare the distance with each of the candidates ok.

So, then can we reduce this  particular  time can we at  least  reduce the time taken to

calculate all the hash functions and why we talking about this because, now we know

that we have some idea of because this kind of looks a lot like random projections right.

So, and we know a faster ways of doing random projections so, can we utilize this right it

is a natural question to ask.
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In order to formalize the algorithm, let us first draw the connection between random

projections and locality sensitive hashing in the l 2 case a little bit more tightly right. And

the connection is its pretty it is pretty intuitive right, we can basically look at LSH as a

random projection happening onto k dimensions plus a quantization happening on each

of the on each of the dimensions right. So, what is happening that you can think of I

mean remember for each of the coordinates. So, multiplying the query we multiplying

the data point x by a random vector v i, think of creating a matrix A by just stacking

these stacking these random vectors v i in the rows right.

So, each row of a is one of the v is that we were using before right and then and then

think of multiplying A with the with the vector x, we now get a k dimensional vector Ax

right so, this is a k dimensional vector. Now we add a random I mean instead of choosing

a single value b i right, just choose I mean just choose one b i for each of the coordinates

just create a k dimensional vector with a with a with a random choice b i for each of the

coordinate that lies in 0 to w right. Then add these two so, a calculate A x plus b this is

again  our  k  dimensional  vector  right.  Now  bucketize  it  each  of  the  coordinates

independently and you are done right, you in one in one sort of fell swoop of a of a

matrix vector multiplication plus some shift and now you have the entire k sized index

for a single hash table and this is I am not saying anything new with this, but this is what

we have been doing. So, the time taken by this I mean so, the time taken remains the

same because, the procedure is the same and so, it is k d per hash table.
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Now, now you see the connection can we make this faster, so if I may want to make this

faster  I  want  to  preserve some certain  properties  what  is  it  that  we that  we want  to

preserve right. So, to do this let us step back a little into LSH and see that what was the

important point quantity that we were talking about when we were analyzing the I mean

how good of a locality sensitive hash function was this particular algorithm right, how do

we analyze the quality of locality sensitive hash function? And if you remember we were

analyzing it by looking at the collision probability.

So, what is the collision probability? The collision probability in a short sort of sentence

is to say that that supposing two points are at distance u right, p and q on a distance u in

terms of L 2 distance and I want to see what is the probability that they will collide. So,

while we have not written this down exactly in the in the previous discussion for this

particular for this particular construction you can actually write down a sort of nice form

for the collision probability and I will just give an intuition for this right.

So, so, in the case that in the case that h i f x is this particular quantity h i I mean is the so

h i of x is this particular quantity right. We can write down what is the probability of

collision if two points are a distance u right and the way we do this is as follows, I will

just give you the an intuition for this. So, remember that x times v i so, what is x times v

i or rather p times v i versus q times v i right.



So, if you look at the random variable p dot v i minus q dot v i right that is a Gaussian

random variable right, because of the two stability property of Gaussians that we have

seen. There is a Gaussian random variable and has variance that is distributed with the

standard deviation that that scales with the with the L 2 distance between p and q ok. So,

p dot v i minus q dot v i is a Gaussian variable with variance p minus q L 2 p minus q

distance square ok.

So, then I can actually write down what the what the PDF of this random variable s right

because, suppose f of v is the p is a PDF of the absolute value of n 01 right. Therefore,

the PDF of this of let us say the if I multiply v by alpha the PDF of this quantity, the PDF

of the random variable f alpha v is actually 1 by alpha f v by alpha say. So, let me clean

this up a little bit and so, that we can see better so, the PDF of alpha v is 1 by alpha f of v

by alpha.

(Refer Slide Time: 14:34)

And you can see this if you just think about it for a couple of minutes because, you are

sort of in some sense multiplying the alpha is just reducing the scale it is just changing

the  scale  of  the  random variable  right.  And then  so,  and  so,  the  standard  deviation

changes and that is what is reflected here ok.

So, then what this is saying is that the probability of collision right that I mean if two if

two points are a distance u right this part right kind of measures that what is the I mean

what is the for a particular value of t right. What is the chance that the random variable p



minus q dot v i right, which is which is a random variable with this PDF what is the what

is the total probability that p minus q dot v i lies in the range from 0 to t ok.

And this part kind of measures right that what is the chance that w right that the b or

rather  the b right so,  what is  the chance that  b actually  happens to drop a separator

happens to remember what is b doing, b is just shifting these boundaries of these of these

intervals right. I mean the boundaries could start at 0 or if you add I mean b to everything

boundaries could start at b right.

So, you can think of b as just as just playing around as just randomly the separators

between the intervals right. So, then what this part of it is the probability that b is chosen

such that separator drops between 0 to t right or rather a separator does not drop between

0 to t right. Because the probability of that is that a separator drops only in this interval

from t minus w to from t to w which is of size t minus w by w, which is exactly 1 minus t

by w right.

So, this kind of captures the probability exactly that there is a collision between that h i p

equals  h  i  q.  let  us  know  how  to  see  that  this  is  decreasing  with  decreasing  with

increasing u.

(Refer Slide Time: 16:41)

So, now, and this is what we want to say that even if now why is this useful what we

want to say is that if I do something other than the independent Gaussian. I want to make



sure that this collision probability does not suffer that the collision probability does not

increase beyond what it was in the independent Gaussian case ok, this is how we are

going to analyze this.

So, this comes from a paper of ours (Refer Time: 17:08) called the AC hash named after

Ailon and Chazelle what we say is that that this is that our original sort of LSH was

essentially calculating A x plus b and then quantizing each of the each of the dimensions

by I mean using these buckets using these intervals of size w, where A was a Gaussian

matrix simply replace A by the Johnson by the first Johnson Lindenstrauss matrix. Which

compose which is now composed of P then the normalized Hadamard and normalize

Hadamard matrix and the diagonal matrix t ok, instead of instead of the Gaussian matrix

just use P and choose q to be of more or less of the same type same order as we were

choosing the original q in the f del t construction basically like log t by d I mean it is a

little different slightly different, but not, but basically the same.

Now the projection time remember when A was Gaussian the projection time was k d

and now the projection time becomes d log d plus k log square d exactly there is ld

construction ok. So, the projection time technically has improved right because, k is 1 by

epsilon squared and so, it is potentially much less than log d for all practical values of d

and epsilon ok.

(Refer Slide Time: 18:26)



So, but that is not enough now, we have to argue that this particular construction that we

have that we have sort of done using LSH has the same properties as the original LSH

construction has had in terms of the collision probability right. And this is not an easy

argument right because now, because now what has happened is that the I mean just

intuitively  the  different  sort  of  indices  of  a  particular  hash  function  let  us  say  if  a

particular hash table H x is now h 1 of x times h 2 of x h 1 of x and h 2 of x are no longer

independent of each other because of the particular projection f g l g construction that we

have done. So, that complicates the analysis quite a bit, but what we are now still able to

say is that if you take see what was it previously.

So, previously what we are saying that for each h i of x right probability that h i of p

equals h i of q was p of u if u is a distance between p and q. So, therefore, probability

that capital H of x p equals capital H of q equals p to the k of u right because, remember

because a hash table is constructed out of k such hash functions that are iid right. So,

therefore, the probability of collision becomes p to the p u to the power k ok.

So, then this you should think about as the I mean this basically is like the original LSH

collision probability. Now what we are denoting in the probability of collision of the

probability of collision will so, let us say H tilde is my nu hash index which is a k bit

index again. Now we define the probability that H tilde of p equals H tilde of q to be P

AC of u. So, now, this is the this is the combined probability that the particular k topple

of that have created for a single hash table collides with the particular topple for p and

collides with k topple for q ok.

And  we  have  to  we  cannot  segregate  we  cannot  this  is  not  independent  all  as  I

mentioned. So, now, we have to give a different set of bound that basically says that the

collision  problem remains  more  or  less  the  same  as  before  it  does  not  increase  or

decrease by too much ok. So, and we do not need to go into the details of this bound

more than that.
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But the algorithm itself  is fairly simple right because,  we just  replaced the Gaussian

random projection by the FJLT random projection. So, you can actually do better than

this and this is what we call the; and this comes from the same paper and this is what we

call the DH hash right.

So, the components of this are a little different so, we will have let me define a few of a

few such notations. So, we have the D right, which is part of our randomized Hadamard

transformation which we have been using, we have a new matrix here called the G that

we denote by G what is G? G is again a diagonal matrix except that it looks very similar

to D right, except that every entry is now sampled from a independent Gaussian. D was

being sampled from independent plus minus 1 G is being sampled from independent

Gaussian I mean random variables each entry each dii is a independent Gaussian random

variable. We are we also have M which looks like a in random permutation matrix.

So, for a 3 by 3 for instance it says that so, if you have a 3 by 3 it says that maybe this

goes here maybe this goes here maybe this goes here right. So, basically every row and

every column of M has only 1 1 1 and everything else is 0. So, is it is just I mean M

applied to any vector x just permutes the I mean the values of the x i the values x i. And

now instead of calculating this A x plus b right with a being PHD this is what we do.

So, we multiply HD x, then we multiply again it by M, then we multiply it again by G,

then we multiply it again by H and then and this is my random projection first. And then



we and then we add a shift to it and then we quantize so, you might ask that what is

happening instead of multiplying it by single A we are multiplying it by more matrices

now right.

 So, how is this any faster well this is faster right because, although we are multiplying it

by 1 2 3 4 5 matrices right 3 of them are diagonal. So, multiplying by a diagonal matrix

is very easy and 2 of them are Hadamard so, multiplying by a Hadamard matrix is also

very easy right. So, although instead of a single matrix we are now I mean have multiple

such operations to do the overall effect is that it is actually much faster.

(Refer Slide Time: 23:15)

And we can also I mean so, one thing now so, now, so, one other thing to notice that see

all these matrices are now d by d ok. So, now, we have this vector which is actually a

sort of length d vector right, if I do H GMx the this quantity.

So, what we could do is that we could sample we could sample k sort of indices from it.

So, we take one sample of k indices from it that forms the index for my first hash bucket,

we again sample k indices from it that forms the index of my second hash bucket and so

on and so forth right. So basically, we are not redoing the calculation L times right, we

are just we are just doing I mean taking multiple samples from here and then sort of and

then calculating the index of each bucket ok.



And this transfer to work fine right and we can prove a similar theoretical guarantee for

it and the total calculation time for all the L bucket IDs that answer to be d log d plus k L

only  right  which  is  a  I  mean  again  faster  than  the  AC hash  that  we are  doing  and

certainly a lot faster than the original thing ok002E

(Refer Slide Time: 24:35)

So, I mean just to summarize just to give some experimental results you should look at

the paper if you really want to read about this; what it says is that I mean in terms of the

recall we are similar to the original LSH right. In, but our query time and our average

query time and our average time in actually calculating hash buckets are both are both

much faster than the original LSH which is a which is a win ok.

.
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So, now next to just to sort of go forward we have seen already one variant of the of the

random projection, but there is more to come right. So, FJLT is fast right so, definitely a

big improvement it is a amazing algorithm right, but here is A is problem right that I

mean it does not it does not do well with the particular type of vectors that we are very

interested sort of in machine learning relative applications and these are sparse vectors.

For instance, if you are representing a document and it is always it is almost always a

sparse vector  right  because,  the size of  the vocabulary  is  way larger  than the actual

number of words in the document right.

Now, let us see let us kind of think a little bit about what happens? When I have the input

x to be such a sparse vector and I apply random projections to it right, either I apply sort

of multiplying it by the by a Gaussian matrix as we have been doing or we multiplying it

by PHD what happens then?
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What  happens  is  that  in  both  cases  it  is  becoming  dense  right  because  Hadamard

transformation  makes  it  dense  right  and  multiplying  it  by  p  again  makes  it  I  mean

increase I mean does not decrease the sparsity at least and definitely multiplying it as a

sparse vector by a by a dense Gaussian matrix may makes it dense right.

So,  in  both  the  constructions  at  of  random  projections  that  we  have  seen  we  are

converting a sparse vector to a very dense vector. In fact, even if the original vector had a

single nonzero entry single nonzero entry the final vector is likely to have all d nonzero

entries right basically full density. Soit results in its much more expensive and this can

become much more expensive in terms of both storage and computation ok.
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.

So, here is the question can we design a linear transformation such that it preserves the

norm just like before and it does not increase the density by so, much right maybe it has

to increase the density by what, but maybe it does not increase the density by. So, much

is it possible to sort of design such a random construction.

It is not hard to see that the existing iid constructions do not satisfy this and in some

sense we have already seen a an example before right when we were sort of talking about

sparsifying the random projection matrix right that its not that that if I make the random

projection matrix independently and if I sort of make it very sparse right if I mostly try to

put in 0s in every in every in every entry then i will end up with columns at a 0 and then

I will be in trouble right because it is not going to preserve that the norm of sum vector.
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Here is another way of thinking about creating a random projection matrix. So, think

about creating a I mean think about a hash function first of all.

So, what does this hash function do? So, let us say that the input vector x is of dimension

d right. So, this is x and y is a dimensional k. So, y is my target vector. So what so we

have a hash function that goes from d to k right. So, basically it takes an a it takes a

coordinate id takes a coordinate id in a dimensions and maps it to one of the coordinate

ids one of the buckets in k dimensions right we also have a sin hash function that does

nothing, but sort of I mean adds I mean that assigns a random sign to each of the to each

of the dimensions and so on and so forth maybe the center plus here minus here minus

here plus here and. So, on maybe the sense plus here and now we obtain the vector y by

basically  taking all  the I  mean all  the entries  that  are being mapped into this  bucket

multiplying them with the correct signs with the appropriate signs.

So, in this case for instance a b and c are mapping into the second bucket of y therefore,

the value that you put in the second bucket of y will be a minus b plus c because s

assigns plus one here minus one here and plus one here right. So, this is what and if you

write it down formally this is the definition of y right and y of j is the summation over all

i such that m such that h i equal to j s i times x i.
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So, how does this correspond to projection it is not very hard to sort of see that you can

capture this operation exactly by the by sort of designing a projection matrix what is this

projection matrix hash this projection matrix is again of dimension k by d right and what

it has is that you look at every column you sort of take the function h and then for the ith

column you see where what is h of i right. So, h of i is a number between one and k. So, I

go to that column you go to that particular row and then you see what is s i right if s i is

plus 1 you put n plus 1 in that entry phase is minus 1 you put minus 1 in that entry right.

So, basically every column has a single nonzero entry that nonzero entry is defined by

the position of the nonzero entry is defined by h of i and what you put in that nonzero

entry plus 1 and minus 1 is defined by s of i and now it is not again very hard to see that

sort of the operation that I just mentioned is basically the same as multiplying the vector

x right with this with this particular projection matrix it is you get exactly the same y

right there. So, these two these two ys are the same right it is exactly the same operation

just convince yourself of this.
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So, a good thing has happened right because now if you again think of it the number of

non zeros of y is that not is not more than the number of non zeros of x because I mean if

x has I mean right because every entry of x I mean falls into exactly one of the buckets

so. So, therefore, it cannot increase the number of non zeros of y. So, now, the question is

that does the norm of y equal to norm of x I mean again we are not going to go into y

naught, but it is not I mean just convince yourself or think about this a bit, but what we

can  claim  is  a  norm preservation  does  not  really  happen  it  there  is  only  one  hash

function. So, we need to repeat this construction right and what we will see is that.
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I mean I will just tell you what the construction is and then we will sort of talk about this

we will sort of refresh this in the in the next class.

What we need to do is that for every column we were choosing only one nonzero entry

we were choosing only one nonzero entry here we will have l hash function here what

we will do is choose l non zero entries l positions instead of one. So, we will make sure

that every column has l positions more or less and for each position fill it up I mean toss

a random coin again and fill it up with a plus one or minus one. So, similar to what as I

was doing ok.
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So, and we will sort of go over the proof we will sort of talk about let me actually finish

this then there are basically only two different ways of I mean two different ways of

choosing  these  positions  right  one  is  that  you  could  choose  the  positions  with

replacement right and since if I mean i choose this position and then I could again choose

back this position. So, I choose l positions with replacement which means that in effect

there could be less than l nonzero entries right because the nonzero entries could clash

the choice of the nonzero entries and this was I mean again work done in one of our

papers better construction that was suggested by king and nelson is that you choose l

positions without replacement.



So,  in  every  column you make sure  that  you choose  l  positions  independently  right

without replacement right and every set of l positions is equally likely to come and then

for each nonzero position you put in a plus 1 or minus 1 with probability half.
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.

So, it turns out that you can make the same kind of guarantees you can set k to be the

same quantity one over epsilon square log one over delta some c by epsilon square, but

this is order notation anyway and if you choose one to be basically 1 by epsilon right you

can choose l to be 1 by epsilon and then have the same Johnson Lindenstrauss kind of

guarantees.

So, now, the number of what you can then guarantee is that now my projection matrix is

much sparser right and what you can guarantee is that if a vector x has n n z x 1 0 entries

now it will have at most n n z x by epsilon nonzero entries. So, we have increased the

number of another entries by a factor here 1 by epsilon, but still in effect it might have it

might actually have much less nonzero entries it might not be entirely nonzero it might

not be it might not be completely dense.
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So, just some references for this for this particular lecture the first Johnson Lindenstrauss

transformation as you have seen was the was the paper from Ailon and Chazelle the two

other result that I talked about the application from locality sensitive hashing comes from

this paper in KDD and the sparse Johnson Lindenstrauss transformation comes from this

paper in stock and we will see some applications of this later again.

Thank you.


