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Hello. Welcome to the NPTEL course on Scalable Data Science, lecture number 2. Today

we are  going to  discuss  about  the Background on Probability  Theory which  will  be

required  for  this  course.  I  am Professor  Sourangshu Bhattacharya  of  Department  of

Computer Science and Engineering, IIT, Kharagpur. 
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So,  in  this  lecture  we will  discuss  the  basic  definitions  of  probability, then  we will

discuss  random variables  and  distributions.  We will  discuss  expectations  of  random

variables  and we will  describe some common distributions  which are used in  a data

mining  and  machine  learning.  Then  we  will  describe  concentration  3  concentration

inequalities. So, first we will describe the Markov inequality, then we will describe the

Chebyshev’s inequality and finally, we will describe the Chernoff bounding technique,

ok.
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So, 4 terms come or are important a while defining probability. So, first is an experiment,

an experiment is any real life phenomenon’s which we want to study or we want discuss

or we want to model, ok. So, for example, the tossing of a coin is an experiment tossing

or. So, experiment could be also much more complex things like for example, tossing of

two coins and or tossing of any number of coins.

Then we discuss, we use the term sample space which describes the set of all possible

outcomes of an experiments. So, for example, if our experiment is toss of two coins or

toss of a coin twice then the sample space is of size 4 and the and the sample space is

basically a head followed by a head, a head followed by a tail, a tail followed by a head

and a tail followed by a tail. So, these are the 4 possible outcomes. 

Then the term event is used to describe a subset of possible outcomes. So, for example,

eh as you can see event A may be just occurrence of one head followed by a head or

another event B could be the occurrence of a head followed by a tail or a tail followed by

a head. So, given this the probability of an event is a number which is assigned to an

event, ok. So, let the event be A. So, the number is described as probability of A. And

this number will should satisfy the following 3 axioms the first is it should be positive,

second is the probability of entire sample space that is which is also an event should be

one and lastly if you have a set of disjoint event say A i, ok. Then the probability of



union of this disjoint events A i is the sum of probabilities of this disjoint event, so this

are the 3 axioms that it should satisfy.

As you can see if for example, simple way of calculating the probability is if you have N

outcomes, so if you can describe your experiment in terms of let say capital N outcomes.

And let say for a given event a N denotes the number of outcomes which favor the event

a the probability of event A could simply be written as n of A divided by N you can see

that this satisfy all the axioms of probability. 
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Next we just describe the term joint probability. So, the joint probability of two events A

and B also described as probability of A B in this the probability that both events occur,

ok. So, this is also sometimes described as the probability of intersection of the events A

and B, ok. So, then we describe the notion of independence. So, two events A and B are

said to be independent if the probability of A B or the joint probability of A and B is

equal to the probability of occurrence of A times the probability of occurrence of B. 

Another so if we have more than two events let say you have events A i then the joint

probability of occurrence of all the events A i which is the probability of intersection of A

i is equal to product of probabilities of A i if all the events are independent. Finally, we

can describe the conditional probability of two events A and B, given that the probability

of event a is strictly pros positive that is there is a probability that the event a will occur



and the probability of conditional probability of the event B given A is a joint probability

of event A B divided by the probability of event A. 
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Now, sometimes  it  is  easier  to  describe the outcomes as  values  of random variables

instead of sets of entities. So, for example, a random variable is a variable which takes a

values which takes values in the sample space and they describe a numerical outcome of

once such a random experiment that we have discussed earlier. So, there can be two

types of random variables, one is the discrete random variable. So, a discrete random

variable is a random variable which takes one of either a finite number of a different

values or countable number of different values.

So, for example,  if  we consider if  we consider our experiment  of coin toss then the

random variable X equal, so we can define a random variable X, as X is equal to 1 if the

experiment turns out to be head and 0 if the experiment turns out to be tails. Similarly for

example, in case of a phone survey the random variable Y could be 1 if the person you

call is male and 0 if there the person you call is female or in case of throwing of a dies

which is another random experiment the outcome could be the number of spots on the

face of the thrown die. So, the random variable Z in that case will take on 6 values is the

1 to 6 because there are 6 faces. 

The distribution function for a discrete random variable which is defined as probability

of which is rather written as probability of X is equal to x or Pr of x sub probability of x



is the probability that the random variable takes the value X. Now, from the previous or

from  the  previous  axioms  it  is  easy  to  see  that  the.  So,  the  random  variable  the

probability of a random variable takes on values or the probability distribution function

of a random variables takes on values which is greater than 0. And the sum over random

variables or sum over the probability of sum over all values the all values say x the

probability  of x is equal to 1, where x basically ranges over the sample space or all

possible outcomes.
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Now, unlike  discrete  random  variable  continuous  random  variables  are  the  random

variables which take infinite number of values. So, examples include for example, the

rate of GDP growth of a particular country per year or the number of hours till a light

bulb fails or the number of hour a light bulb glows till it stops growing glowing or fails.

As you can see the total number of values that this particular random variable can take is

infinite,  hence  what  you can check or  what  you can see is  that  the  probability  of a

continues  random  variable  taking  a  particular  value.  For  example,  the  light  bulb  a

glowing  for  particular  number  of  hours  let  say  3.1415 hours  is  actually  equal  to  0.

However, the probability of a random a continuous random variables taking values in a

given range is a finite number so, for example, the light bulb glowing for 3 to 4 hours a

before failure the probability of that may be 10 percent or 0.1, ok.



So, the distribution function of a continuous random variable which is also written as

probability of x is actually the probability that the continuous random variable capital X

takes on a value between x and x plus dx which is a small increment from x. We can see

that again the distribution function of a continuous random variable takes is a positive

quantity and if we integrate over all possible values of x the so it integrates to 1, because

the probability of the sample space has to be 1.
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Next we define the interesting concept of expectation. So, expectation of discrete random

variables  is  the sum over  all  possible  values  of the random variable  X,  X times the

probability of x, ok. So, and similarly you can see that for a continuous random variable

this summation is replaced by the integral. So, it is the integral over all possible values

again the infinite number of values the continuous random variable can take and x times

P of x dx.

Now, if we have finite number of samples say x 1 till x N of the random variables then

we can estimate the expectation of x using this formula 1 by N summation over i is equal

to 1 to N x i. As you can see this is the formula for the average value of the random

variable, hence the expectation of the random variable also denotes or it describes the

average value of the distribution of the expectation. 

Now, there are other ways of denoting. So, expectations is a measure of central tendency,

ok. So, there are many other ways of measuring such as mean mid, so mean is also the



expectation  is  also  called  the  mean  but  median  and  more  are  also  other  ways  of

measuring the central tendency of a random variable. 
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Another  very very important  quantity  is  the variance  of  the  random variables  is  the

variance of the random variable is defined as the expectation of this quantity X minus

expectation of x whole square. So, for example, if random variable as an expectation or

mean of E of x and if we take any value x in the sample space what we are measuring the

square of the difference and taking the expectation of this square ok. So this is; what is

the variance of the random variable X.

Now, as you can see this is a measure of a spread of the random variable X. More over

this small derivation here shows that you can actually calculate the variance of X and

expectation of the random variable X square minus the expectation of X whole square.

And this is because of the linearity property of the expectation. So, what we can show is

that expectation of X plus Y which is another random variable is nothing but expectation

of X plus expectation of Y, ok. And using this formula we can show that we can expand

we can expand the square and then we can percolate the expectation in side and see that

it turns out to be expectation of x square minus expectation of X whole square. 
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Now, we describe some compounds distributions which are used in practice. So, the first

common distribution that is used in practice is the Bernoulli distribution. So, this is the

distribution over binary outcomes, ok. So, if the a outcome of an experiment is either

success which is denoted by 1 or failure which is denoted by 0, then we can describe the

we  can  describe  the  outcome.  So,  then  we  can  describe  the  distribution  over  these

outcomes using probability of success parameter which is the p parameter, ok. So, note

that probability of failure is automatically becomes 1 minus p. 

Hence we can see that the Bernoulli distribution can be written as p to the power x times

one minus p to the power x. So, the distribution function of the Bernoulli distribution can

be  written  as  p  to  the  power  x  times  1  minus  p  to  the  power  1  minus  x  and  the

expectations  of  the  Bernoulli  distribution  is  just  p  and the variance  of  the Bernoulli

distribution will be turn out to be p times 1 minus p.
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Next, we describe another very interesting distribution which is the binomial distribution

the binomial distribution models instead of one draw of it models N draws of a Bernoulli

random variables, ok. So, instead of measuring success or failure of just one random

variables something like a heads or a tail, it measures the number of successes that one

can get if we toss if we toss the coin or if we perform the experiment N number of times,

ok. So, the binomial distribution has two parameters p and n the first parameter p denotes

the probability of success and the second parameter n denotes the number of times you

have tossed the coin. 

And we can see that the probability  of or the probability  distribution function of the

binomial distribution is n choose x, p to the power x times 1 minus p to the power 1

minus x and the expectation of a the binomial distribution is n times p and the variance

of the binomial distribution is n times p into 1 minus p. 
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And this is a plot which shows the distribution function for the binomial distribution for

different values of p and n, as you can see as the n increases or the number of coin tosses

increases for the same success probability the mean increases and the distribution shifts

to the right where as this blue distribution is for 20 coin tosses, so for mean for this is 0.5

times 20 which is 10.
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Next, we describe another important distribution which is the Poisson distribution which

is a distribution over the number of arrivals of let us say objects or customers in a queue



or a packets in a networks given that the average rate of arrival is lambda, ok. So, if we

come from a binomial  distribution  then the we know that  the average of a binomial

distribution is np and hence if we set np equals to lambda and then if we let the number

of trials n tends to infinity because there can there can be infinite number of customers

who arrive. Then we arrive at the distribution function of the Poisson distribution and the

distribution  function  of  the  Poisson  distribution  is  given  by  this  number  where

probability of x number of arrivals is lambda to the power x by x factorial into E to the

power minus lambda. And we can see that both the mean and the variance of the Poisson

distribution is lambda.
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And here we show the distribution function of Poisson distribution for various values of

the parameter or of the mean parameter lambda. 
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Another  very  important  distribution  is  the  normal  distribution  or  the  Gaussian

distribution  which  is  a  continuous  distribution.  So,  the Gaussian distribution  random

variables  takes  values.  So,  the  Gaussian  random variable  is  X it  takes  values  in  the

intervals minus infinity to plus infinity, ok. And the probability distribution function of

the Gaussian random variable is given by this quantity and if we want to calculate the

probability of x taking values between two numbers A and B it is given by this integral as

we have discussed. 

Now, the important thing is that the Gaussian distribution is actually parameterized by its

mean and its variance. So, the Gaussian distribution is parameterized by its mean mu and

variance sigma square more over it has the nice property that is you have two Gaussian

random variables x 1 and x 2 with means mu 1 and mu 2 and standard deviation sigma 1

square and sigma 2 square. Then the sum x 1 plus x 2 is also a Gaussian distribution with

mean mu 1 plus mu 2 and standard deviation sigma one square or variance sigma 1

square plus sigma 2 square.
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And this is the plot or this is the curve of the distribution function of the standard normal

or of the Gaussian random variable for various parameter values. 
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Now, we go into concentration inequalities. So, many a times we do not need to calculate

the probabilities exactly  but it  is  enough to have a bound on the probability. So, for

example,  we  may  want  to  know  whether  the  probability  of  an  earthquake

occurring tomorrow is let say less than 10 percent or equal to 50 percent or greater than

90 percent. So, we do not nearly need to know the exact value of the probability but we



need  to  know  the  value  of  we  need  a  bound  on  the  probability.  So,  concentration

inequalities allow us to do that in case of very very complex events for which the exact

calculation of probability may not be possible.
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So, for example, consider the situation where we want to let say calculate the probability

or  calculate  the  expectation  of  a  random  variable  N  which  counts  the  number  of

occurrences of 14 heads in a coin toss of thousand coins, ok. So, how many times would

a contiguous sequence of 14 heads occur if I toss a coin for 1000 times, ok. So, how will

we calculate the expectation of this?

So, first we define an indicator  random variable  I i  which denotes the event that  14

consecutive heads occur starting at position I. The probability of this happening is 1 by 2

to the power 14 because probability of one head occurring is half and hence probability

of 14 consecutive heads occurring is 1 by 2 to the power 14. Now, then N is actually sum

of I 1 till I 987 which is in all the ways in which the 14 heads can occur and hence by

linearity of expectation we can see that expectation of N the number of times 14 heads

occur in thousand coin tosses is roughly 6 percent. 
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Now,  we  discuss  the  Markov’s  inequality  which  will  which  will  give  us  our  first

concentration inequality. So, the Markov inequality says that the probability of a random

variable  taking value  greater  than  a  specific  value  a  is  less  than  expectation  of  that

random variable X by a note that the random variable X has to be a non-negative random

variable. So, if we use this if we use this inequality Markov’s inequality then we can try

to calculate  the probability that the number of times 14 head occur heads occur in a

sequence is greater than exactly 1, ok.

And we can calculate this by we can we can say that this probability is less than about 6

percent because, we have already calculated that expectation of N is 0.6. And hence, we

by a Markov inequality we know the this is expectation of x by 1 which is less than 0.6. 
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Now, in order to see this it is easy to see this. So, we write the expectation of x into two

parts. So, let say this is the random variable X and this is the value a. So, we can take the

expectation of X condition on the fact that X is less than a. So, all the expectation over

all values of X which is less than a and so this is the second term. Now, we note that

since X is a positive random variable the probability of X less than a is greater than 0 and

also the expected value of X such that X less than a is greater than or equal to 0 because

for all values of a the random variable X takes only positive values, ok.

Similarly, we know that expectation of X such that X greater than a is always going to be

greater than a simply because all values of X in this part of the term are actually greater

than a. So, all values of a that I take are greater than a. From this we can see by setting

this term to 0 we get the Markov inequality. 
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Now, suppose a coin is we can use the Markov inequality to calculate the probabilities of

events or other bound the probabilities of events in many cases. So, for example, suppose

a coin is tossed 1000 times we and we want to give bounds on probability that the pattern

each occurs probability that the pattern each occurs at least 500 times or at most 100

times, ok.
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And this  can  be given using.  So,  the  first  bound can  be given is  a  straight  forward

application  of  Markov  inequality  where  N  is  greater  than  500  and  we  can  see  that



expectation  of  N  is  actually  just  999  by  4  which  is  249.75.  Now, for  the  second

calculation we can define a new random variables which is 999 minus N and calculate

the probability that this is greater than 899 and we can come up with the probability of

83 percent and this one is probability of 50 percent. 
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Now, the Markov inequality have some problems the first problem is that it assumes that

the random variables is positive, ok. The second problem is that it does not utilize the

information about the variance of the random variable ok; it only utilizes the information

about the expectation or the means of the random variable. So, Chebyshev’s inequality

solves that problem by taking care of both the mean and the variance of the random

variable and giving the bound ok.

So, as we can see here the Chebyshev’s inequality says that the probability of a random

variables deviating from its mean by more than t times the standard deviation is less than

1 minus 1 by sigma 1 by t square, ok. So, if we draw this random variable the pds of this

random variable and let say this is the mean. So, it is giving us the probability that the

random variable deviates by more than t times sigma. So, it deviates on either side by

more than t times sigma or t times standard deviation and this quantity is less than 1 by t

square. 

So, how do we derive this? So, we can derive this by using Markov inequality on the

random variables mod of X minus mu. So, if we if we use if we or we can also use the



random variable X minus mu square, if we use the random variable x minus mu square

the probability that of this event occurring that X minus mu mod of this is greater than t

times sigma is nothing, but the probability of X minus mu square being greater than t

square  times  sigma  square  and  by  Markov  inequality  this  is  less  than  or  equal  to

expectation of X minus mu square by t square sigma square.
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And we know that expectation of X minus mu square is nothing but sigma square, hence

this probability is bounded by 1 by t square. 
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So,  this  is  an  illustration  of  the  kinds  of  bounds  that  the  Markov  inequality  or  the

Chebyshev’s inequality gives, ok.
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So, we have already seen linearity of expectation and we have also seen the Markov

inequality. Another important bound is the union bound which is the which is the bound

on probability of union of events which is which will also be heavily used in this course

ok, and the bound says that the probability of union of a certain number of a events either

they can be independent or they may not be independent is less than the probability of

the sum over the probability of each of this events. So, this is the union bound. 
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Now, we describe our final technique which is the Chernoff bounding technique. The

Chernoff bounding technique tries to bound give bound on the probability of a random

variable X taking a value greater than a or it can also be derived for random variable X

taking a  value  less  than a.  And here note that  unlike Markov bound there is  no the

Markov inequality there is no restrictions on the value of the random variable X. So, the

random variable x need not be positive.

Now, we can do this simply by raising E to the power t of X and the event that X is

greater than a is same as the event that E to the power t of X is t times X rather is greater

than the event E to the power t times is greater than E to the power t times a for t greater

than 0. And this using Markov inequality is expectation of E to the power t times X by E

to the power t times a.

Similarly, for the event X is less than a we can use a t less than 0 derive the same bound.

Now, the interesting thing is that we can actually optimize this bound over all possible

values of t to derive a much tighter bound then what could normally be given by Markov

inequality. So, for example, if this random variable X is sum over X 1 till X N then you

can see that the Chernoff bounding technique can be used to derive a bound on some of

random variables being less than a particular value a as the minimum over t greater than

or greater than 0 E to the power minus t a times product over all i is equal to 1 to N



expectation  of  E  to  the  power  t  i  X.  So,  here  the  random variables  x  i  has  to  be

independent, ok.
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So, the function E to the power t x is actually called the movement generating function

because the derivative of so.
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So, if we call this function as M of x then the derivative of M of the rather the N X

derivative of M of X actually gives the nth movement of the distribution function of E to

the power t of X. So, these are some of the results that you can derive using Chernoff



bounding technique. The first one is that if you have X as sum of X 1 till X N and all

these are independent binary variables. 

Then with mean mu which is also the probability of these being 1, then the probability of

that sum being greater than 1 plus delta times mu is always less than or equal to E to the

power delta by 1 plus delta to the power delta whole to the lower mu. And this is another

simpler form where we can show that the probability of X minus mu being greater than

delta times mu is less than or equal to 2 to the power 2 times E power minus mu delta

square by 3. 
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So, this brings us to the end of the Chernoff bounding techniques. The reason we have

discuss this Chernoff bounding technique is because these techniques will be used in

various portion or various topics in this course especially in the topic of sketching in the

topic of random projection and in the topic of dimensionality reduction. 
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And these  are  the  references  for  this  particular  lecture.  So,  some of  the  material  is

borrowed from the lecture notes of sorry, some of the material are borrowed from the

lecture notes of Andrej Bogdanov and the book by Boucheron Lugosi and Massart is

very nice book on the topic. 

Thank you.


