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Welcome to the course on Scalable Data Science. My name is Anirban. I am from IIT,

Gandhinagar. Today’s topic is going to be on random projections.
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So, before we start talking about random projections, let us take a look at this a called the

curse of dimensionality. Since you are taking the course ah, I do not need to sell the

concept of large data to you or even the concept that data is not only large most of the

data that we collect has a very high dimensionality right.

So, imagine for instance that you are creating a classifier for individual web pages or for

individual documents, right. So, the first task at hand would be to represent a document

or a webpage as a vector. And this vector then is inherently very high dimensional. For

instance, one trivial way this vector you could obtain this vector is just by seeing, it is

just by taking let us say the English dictionary, and then seeing which words are in the

document or not.



So, the representation of a document is then this binary vector for instance, right whose

dimension equals the number of words in let us say the English dictionary, right which

itself is pretty large. And if it is a web page for instance, you might need to add in html

tokens, you might need to add in by grams or trigrams which are basically tuples or mean

pairs or tuples or tuples of words of consecutive words ok.

So, there is no question that most of the data that we face has dimensions that we do not

really I mean have much intuition about. For instance, the problem is that when data

becomes high dimensional a lot of the intuition that we bring from low dimensional sort

of pictures or images or intuitions completely breakdown right. And a let us see one

simple example of this right. So, imagine that you are generating data from a normal

distribution ok.

So, if it was one dimensional, then you could easily draw a sort of a picture of this which

is the standard bell curve right; so, which says that; this would be the bell curve in one

dimension ok. And if you look at this, you can easily see that most of the data is really

concentrated around the center mu ok. Most of the data lies very close to mu right, but

now imagine that you were generating data not in one dimension, but in some dimension

d right.

So, what you are generating? So, what you start with is a center mu that is a point in R d.

So, think of t as something pretty large right. But it will turn out that we will see this the

non-intuitive phenomenon that we talk about even for pretty small d even for d equal to

10, 20 etcetera ok. So now, we are generating a d dimensional vectors ok. And we are

generating them as per the following distribution.

So, each entry let us say that it is the ith entry x i is nothing but a normal variable whose

center is mu i which is the ith coordinate of the center mu, and whose variance is 1 ok.

And x i's are independent of each other ok. So, one way to sort of write this distribution

is to say that x comes from a multivariate normal distribution right. So, the center of this

multivariate normal distribution is this vector at the point mu which is a d dimensional

vector. And the covariance matrix of this happens to be I d right. Because the variance of

each  of  the  coordinates  was  1  and  the  covariance  of  2  different  coordinates  is  0.

Therefore, the entire covariance matrix turns out with identity matrix.



So now the question is, that if you look at this d dimensional space right, do most of the

data points lie very close to mu or not right. Because that that was what the intuition that

we took from the 1 dimensional case that most of the data points in the one dimensional

case was very close to mu right. And if you want to calculate this if you want to sort of

see an intuition for this, right we need to let us try to calculate the distance x minus mu

square right. So, for a so far a let us say let us say x is a sample from this distribution,

and I want to see how does this random variable behave this x minus mu square right.
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So, this you can imagine is then the random variable that captures the distance between

the data point generated according to this distribution and the mu right. So, if so, if most

data points are close to mu this particular random variable that we wrote the x minus mu

square right, should be pretty small, and if the if x is more or less close to mu, but is it

the case. So, you see this let us try to calculate the expectation of this random variable

ok. So, this is a scalar quantity of course, because there is a distance.

So now, because x i x has x has x is of multivariate normal distribution whose center is

mu, x minus mu is a multiple is also multivariate normal distribution whose center is 0,

and the covariance matrix remains the same all right. So, the center is 0 the covariance

matrix is id; which means that if I write down if I write this down. So, I have just used

the definition of the other l 2 norm.



So, the l 2 norm between x and mu, the square of that is nothing but the sum over all I

equal  one to  the  x  i  minus mu i  square  right.  And because  x i  minus  mu i  by  the

definition that we have given out here, x i minus mu i again is a random variable, now

with expectation 0 and with variance 1. Therefore, this is nothing but the sum of the

variances right which is d because each of them is variance one right.  So, what that

means is that, and it is not really hard to show that not only is the expectation d right.

The variable the random variable x minus mu squared is actually pretty close to it is

expectation; which means that what we will see is x minus mu 2 norm will be more or

less square root d plus lower order terms or the smaller square root d ok.

So, here we got d because we were taking the square of the distance, and when we do

away with the square we get a square root d right. So, what does the statement mean?

That the x minus that that which that for most of the data points, which means that with

high probability, over the choice of x right, x minus mu 2 norm of that will be more or

less square root d plus small order of square root d. What does that mean geometrically?

Geometrically what it means is that, if you look at the ball of radius d around mu right,

most of the data points will  be on the surface of this ball  right and on a very small

annulus around it. And the width of the annulus is small of square root d; it is actually

something like d to the one 4th or something ok.

So, this is already pretty counterintuitive right, because if most of the ball is hollow, if

you if you imagine that most of the ball is mu lies at the center of the ball, most of the

ball is hollow and almost all the data points lie on something that is very close to the

surface of the ball right. That is not what we were expecting if we when we look at the

one dimensional plane right.

So, since I mean and phenomena like this are fairly common right. So, the point that I am

trying to make here is that, dealing with high dimension is a non-trivial thing. And it is

not just a question of our intuitions breaking down.
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There are a number of other issues. For instance, if you have, if you I mean if you are

trying to build a model for instance right. And the number of features is something that is

close to the number of examples that you have, then your model is bound over fit unless

you very strongly regularize right. So, and one method of regularization is essentially

cutting down the number of dimensions. And this is what we will try to do right.

So,  our  basic  intuition  that  we follow, that  we will  follow is  that  if  the  number  of

dimensions is too large for me to handle. And we have to learn a model or solve an

optimization problem; which depends on the number of dimensions. Then one of the

very common tricks in machine learning is to reduce the number of dimensions to a

manageable quantity, something like k we will we will typically call it k which is going

to be much less than the number of original dimensions that were presented with.

And then we will work with the data that is a dimension k ok. And this thing will come

comes over and over and over back again in machine learning right. For instance, this is

also  and  this  is  known  by  various  names  known  as  finding  out  the  intrinsic

dimensionality of the data, I mean being able to do feature selection effectively and so on

and so forth right. And depending on the particular variant that you are interested in there

are different ways of actually formalizing how to do this reduction.

You have seen  singular  value  decomposition  before  or  principal  component  analysis

before that is one way of doing this. You have also seen factor and you might have also



seen factor analysis before only or independent component analysis or feature selection.

These are  all  different  formalizations  of the same theme that  we want to reduce the

number of dimensions and d of the data.

So, random projection is a unique one among them. And it is unique in the sense that it is

possibly the only one that is data oblivious. So, we have 2 properties. Number 1, is that

we will have a, we will make the dimension reduction data oblivious in some sense. That

is how we do the dimension reduction is completely oblivious to the data set represented

with.  And secondly, we will  make sure that we have very nice very tight  interesting

guarantees on what we can say are on the structure of the original data versus a structure

on the reduced data ok.
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So, what does this guarantee? This guarantee is going to be as follows, that suppose we

have points  x  1 x  2 x  n in  R d  which  are  Euclidean  space.  And suppose I  want  a

representation of these points as x 1 prime x 2 prime x n prime where x i prime is the is a

representation of the of the point x i. And they should lie in some dimensional space R k.

Because I started with Euclidean distance I let us say we also want to preserve we are we

also want the distance function of this of this target space to be also Euclidean, and we

also want k to be much smaller than d ok.

So, the guarantee the kind of guarantee that we want is that the distance between x i and

x I, x i and x j right. Should be more or less equal to the distance between x i prime and x



j prime. And this should ideally hold for every pair ok, but it means is that imagine that

you started with a with a kind of with a kind of tetrahedron in space right. And you want

to reduce it to much smaller number of dimensions right.

And you want to make sure that the distances between all the points are preserved. Right

now it  is  easy  for  it  was  it  is  not  too  hard  for  you to  see  that  if  you  start  with  a

tetrahedron in 3 dimension and you want to reduce it to 2-dimension right. And want to

preserve  the  exact  distances  that  are  not  possible  right;  because  you have  to  squish

something or the other right.

So, this  thing so,  this  preservation can only be done approximately. So,  what  is  this

notion of approximation? And how does that help?
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So, very interestingly, this something like this is fairly easy to do in a particular sense

right.  And  this  was  found  by  and  this  construction  originally  came  from  2

mathematicians  William Johnson and Durham Lindenstrauss  in  this  lemma that  they

gave ah, it is (Refer Time: 13:44) called a lemma in about 1984 ok. What it says is that

such a construction not only does such a construction exist; you can actually find a linear

mapping that achieves. This linear mapping is the same as a matrix right.

So, what it says is that that suppose you are you fix 2 parameters, let us say you fix let us

say at this point, let us forget the delta. Let us fix a parameter epsilon to think of epsilon



as my error tolerance; as in how much how approximately do I want to maintain the

original distances. Suppose epsilon is greater than say something greater than 0, and you

start with the k that is c which is going to be remember k is going to be my size of the

target my target dimension. So, k should at least be something like c by epsilon square

log n.

We will decode slowly how that came about. The result by Johnson and Lindenstrauss

says is, that there exists a linear mapping A such that for all pairs i j right, for all pairs ij

the distance the l 2 distance between Ax in Ax j  lies within A 1 plus minus epsilon

guarantee.

Now, 1 plus minus epsilon factor of the l 2 distance between x i an original x i and x j;

so, supposing this was the original distance x i minus x j. This is the value of this is the

real line. So, the distance between Ax i and Ax j right and this is 1 minus epsilon x i

minus x j and this is 1 plus epsilon x i minus x j right. So, what it says is that? The

distance between x i x j the projected points lies in this in this interval, and this happens

for all pairs ij ok.
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So, we can actually show that, if I choose this linear mapping if this is possible to choose

this mapping A in a random manner, such that this actually happens with a high probable

probability. So,  what  that  means,  is  that  not  only is  it  not  only does it  exist  such a

mapping, it is also easy to find such a mapping right. Because once we give a random



construction for it for specific types of random constructions that we will see right, that

we will be able to guarantee that this particular property holds with high probability ok.

So, this will give a randomized algorithm for this for this particular problem, for this

particular matrix construction ok.

So, the constant c that you see up here that I had forgotten to write is in practice fairly

small right. It is sometime, I mean in something like 6 or 7 is what you need to prove in

theorems. And in practice it comes out to be smaller than that.
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So, just to sort of harp a little bit on the intuition of this problem. Why are we interested

about pairwise distances right? So, this is the picture right, that we start with let us say 1

2 3 4 5 or even more dimensions in line in my original space. So, this is my original

space, and these are the points this blue are the points right. For any of these points x, we

multiply x by A right, and then we look at; so, this is the image of the point Ax right. And

this target dimension this target dimension k is much smaller than the is potentially much

smaller than the dimension of the of the original space right.

In fact, it only depends on the error epsilon and on the number of points that you are

interested in right. It does not depend on the on the original dimension right. What it says

is you look at all the pairwise distances here, all the pairwise distances here. They are

more or less maintained in my target dimension up to this factor of 1 plus minus epsilon.

Actually maybe it should have been this point ok. So, why is this important? This is



important for instance imagine that the original points are clustered in some way. Then

preserving the pairwise distances also implies that we are preserving a cluster structure.

Similarly, if the original points are separable, right for instance we had we have class 1

and we have class 2.

And there is and they happen to be nicely separated from each other by some by some

hyperplane right. Then preserving the pairwise distances also means that the resulting

problem is also separable; which means that I can actually learn a classifier on this on

this target dimension very easily ok.

So, the important point I want you to notice that the input dimension does not come into

the bound at all right. Only the number of pairs that we want to preserve or the number

of points whose distance we want to preserve comes into the picture. And we will see

why I am talking about pairs right.
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So, if there are n choose 2 pairs right,  then it  should be log of n choose 2 which is

basically the same as to log n right. That should be that should come into my target

dimension. And of course, there is the 1 over epsilon square factor; where epsilon is the

error parameter.
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So, why is it useful? As I have already hinted that it is potentially one of it is use and we

will see very concretely a sort of example later in the course is that it will help us learn

classifiers  very  efficiently  right.  That  instead  of  learning  classifiers  in  my  original

dimension  very  high  dimension  we will  do  a  projection  and then  we will  learn  the

classifiers in this resulting dimension. We will also see a lot of examples in what we in

what is known as now known as randomized numerical linear algebra right.

And here for instance, we want to we have a huge data set in which for instance we

undergo  matrix  factorization.  Why?  Because  maybe  people  (Refer  Time:  19:43)

recommender  system.  We want  to  solve  a  regression  problem,  and  in  all  of  this  a

symmetric would be to reduce the target dimension, solve the problem there, aprox and

thereby get an approximate solution in the original space with high confidence.

So now if you go back we have seen a lot of streaming algorithms. We have seen count

min sketch we have seen count sketch and so on and so forth. If you go back and think

about this, you will see that a number of these are essentially random projections right.

You have also seen a bunch of algorithms of locality sensitive hashing right. And we

have also discussed the variations of kd tree or rp trees and so on. And a lot of these as

we will see in today also in today’s class and in next class, a lot of these again the core

idea behind that is this distance preservation notion, and then we are doing things on top

of it right.



There  is  a  huge literature  in  communications  as  well  as  in  computer  science  called

compress sensing. The idea there is that that suppose we have a signal, and we can we

cannot observe the signal directly, but we can observe it through it is interaction through

some through some interaction matrix; that is, given the signal x we cannot observe x

directly,  but  we  can  make  observations  of  the  form  p  times  x;  where  p  is  called

observation matrix right. And we might have assumptions that say that x is sparse right.

And now the problem is that given A y. So, x potentially is very, very large dimension,

but is sparse small number of non 0’s.

By making a small  number of observations y which is  putting which is ideally  only

proportional to the number of non 0’s of x right; if we want to reconstruct x right. So, the

number of observations should be should be a function of more the number of non 0’s of

x and the dimensionality of x ok. This is the compress sense in literature and this very

intimate connection between compress sensing and random projections ok.
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So, we talked a lot about why this is potentially useful. But how do we create such a

matrix right. So, here is a very easy way of creating matrix a bunch of such algorithms

have been given by researchers, we look at a easy way about which you can actually

prove that it works. So, the way we will create the matrix is imagine that we start with

the empty matrix which is of size k by t, and we and we are going to fill this up. So, how

do we fill this up? It is very simple, you go to the entry ij, ijth entry and in for filling up



the ijth entry, you sample a random variable from N 0 1 basically from the standard

Gaussian. You take that value and you set that as the value R ij and you keep on doing

this for all the entries.

So, independently you sample k times d entries and you fill use that to fill up the matrix,

that is it ok. So, this is my random projection matrix. And so, one other thing we need to

do is that we need to normalize it by this factor 1 over square root k. And we will see and

it is easy to see why right. So, if you notice what the expected norm of a row is; so, take

the row the first row right. Each of these are our samples from N 0 1.

And therefore,  each of them have a variance 1, which means that expectation of x i

square where x is the ith entry of row is 1 and therefore, the expected norm of the first

row norm is equal to k right. And I want it to be 1, right. Because if it is going to act as a

as a projection matrix, right all if it is going to add as a projection matrix I need it I

basically if it is going to act as a norm preservation matrix. I need the norm of each

column each column to be one not the row maybe I was talking about a row before. So, I

need the norm of each column to be 1 right.
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So, therefore, I am dividing by 1 over square root k ok. So, why does this work? In order

to see why this works, we need to look at we need to prove a smaller result first. And this

is, but this is really the core of the of the of the theorem right. And this is going to JL

lemma. So, what does he say?



What it says is that that suppose we set k to be some at least c by epsilon square log of 1

over delta; where epsilon and delta are 2 non negative quantities. Then for the previous

matrix that I created let me call that A, and let us take any vector x that has 2 norm 1,

then Ax the probability that x lies in the interval 1 minus epsilon and 1 plus epsilon. So,

the 2 norm x of Ax lies in the probability that the 2 norm of x lies in the interval 1 minus

epsilon 1 plus epsilon is at least 1 minus delta ok.

So, see notice a couple of things. First of all, I am stating the theorem only for the 2

norm of x equal to 1. And this is enough because this is a linear mapping because for any

other x i can always normalize it by the by that norm of x right. And once I multiply by

A, I can again multiply back by the norm and so on. So, having such a stating a theorem

for the unit on vectors is enough right. And also notice that if I can actually show this, if I

can  actually  show  this  particular  lemma  right.  Then  in  order  to  show  the  previous

Johnson Lindenstrauss theorem, we needed to look at all pairs x i minus x j right, and

there are n choose 2 pairs. So, I needed to take union bound over all this space and I

would be done ok.

So, what we will do in this class in today’s in this lecture is just see the proof of this and

then finish ok. So, why does this work? Let us just do a proof sketch a brief proof sketch

of this that.
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Suppose we look at the vector Ax right. And the vector ax is nothing but 1 over square

root k r x which is nothing but 1 over square root k, let me call the entries this is a k

dimensional vector Y 1 to Y k and Y i is summation j R ij ok. So, this is the definition of

Y I. So, what we are interested in; is the 2 norm of ax square which is 1 by k summation

i Y i square. And we are interested in the distribution of this.

So, the thing that comes to rescue is something known as the 2 stability of the normal

distribution, which is as follows. That if p and q are 2 normal random variables and p

happens to be from n mu sigma right; that is that is the mean is mu and the standard

deviation is sigma. Q happens to be from n alpha gamma, the mean is alpha and the

standard deviation is gamma. Then p plus q has mean alpha plus mu plus alpha the sum

of  the  means.  And  the  variance  is  sigma  square  plus  gamma  square  which  means

standard deviation is square root of that and furthermore it is a normal distribution. It is

normally distributed random variable with this with this particular mean and variance ok.

So, this is what we will use.

So now, it is easy to see that each Y i is really the sum of normal random variables.

Because R ij x j are normal random variables. Therefore, R ij times x j’s normal random

variable and therefore, y I is also itself a normal random variable with expectation to be

the sum of the expectation and the variance to be the sum of the variances of this. It takes

only a little bit of calculation to see that the variance of summation R ij x j; is really

summation of A j x j square, which is equal to 1; because I started with x j to be norm 1

ok. So, therefore, each y I is really distributed as N 0 1 right.



(Refer Slide Time: 27:47)

And now, therefore, the expectation of this quantity 1 by k summation Y j by i square

which is which I was defining to be z is also one. Furthermore, I can also say that k times

z is something like a chi squared distribution with k degrees of freedom right; because

the square of a normal distribution is a chi square distribution.

And beyond this we just need to apply chain of bounds. We want to show that probability

of z bigger than 1 plus epsilon is small we apply we apply the standard steps that we did

in sort of showing chain of bounds. And it is again really a chain of style bound, but it is

a little more complicated. Because it involves the moment generating function of the chi

square distribution and some algebra to show that the property that z is bigger than 1 plus

epsilon is that most exp of minus k epsilon square c ok.
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So, that is it really I mean, and the proof for the lower tail bound is also the same. In next

in next lecture we will discuss some other properties of the of the random projections ok.

Thank you.


