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Welcome to the course on Scalable Data Science. I am Anirban from IIT, Gandhinagar

and  we  are  still  talking  about  locality  sensitive  hashing.  So,  today’s  topic  is  Data

Dependent Locality Sensitive Hashing.

(Refer Slide Time: 00:27)

 Again just  to  refresh a memory a offer locality  sensitive hashing was that  we were

looking at this particular framing of the nearest neighbor question. That we are given a

set of data points x 1 to xn. We are also given a query point q and a radius r.

So, what we have to return is the following that if there is any point that is a distance L

minus r then you your algorithm should return one that is a distance c r. So, think of c as

a  small  constant.  So,  c  is  a  small  constant.  So,  let  us  say 1 plus  epsilon.  And your

algorithm is a randomized one. So, so you are allowed to fail  with probability  delta,

which means that with probability 1 minus delta you must satisfy this guarantee.

So,  the  parameters  of  the  of  the  locality  sensitive  hashing  are  k  and  L and  if  you

remember the if you remember the algorithm, it was we chose for each hash table h i, we



chose k iid hash functions, h i 1 to h i k and then we created and then we hashed the

point x using h i 1 to h i, k that gave us a k tuple and that k tuple is the is the bucket id

for the hash table h i ok.

So, note. So, before we even proceed something. So, before we then proceed something

should strike you that the choice of the hash functions has nothing to do with the data

right. It has to do with the distance metric that you promised to use right, but it does not

really sort of take into account the data itself this is completely oblivious to the data is,

this a good thing right.

(Refer Slide Time: 02:11)

So, the what it does is that, the basic intuition of the lsh brings is that we are creating a

random partitioning of the data set,  that if that lies as follows right.  Then each hash

bucket h i can be thought of as building a random partition that we have already talked

about before right that, we are sort of partitioning and the points in each of this partition

go to one of the buckets in one of the hash tables. Each hash table is a separate random

partitioning of the data also.

So, why is this useful? So, this is really useful to guard against worst case data sets, right.

And the guarantee that  the way to interpret  that  the guarantee the guarantee that  lsh

brings is to say that what; however, you design the data set right we can get sub linear

query time some into the rhos query time by doing by running this algorithm right with

constant probability 1 minus delta.



 So, even for adversarially design data sets we can get sub linear query time; however,

this is not to say that this is the, that if you know something about the data set, if your

data  set  is  not  adversely  is  not  adversarially  chosen  this  is  not  necessarily  the  best

algorithm to run right. I mean potentially I could try to exploit some property of the data

set in order to create this random partitioning right and this could possibly act and this

could possibly perform better than the than the partitioning that lsh creates.

(Refer Slide Time: 03:50)

 Right for instance assume here assume for instance that the points lie in Euclidean space

right.

So,  let  us say that  the  points  are  all  lie  in  this  particular  ellipsoid  right  in  this  high

dimensional ellipsoid. So, what that means, is that if you choose random directions and

try to partition the data right you might not be very successful for most of the directions

right. If the directions if the random partitions if the random directions lie along I mean

lie  along orthogonal to this  to this  ellipsoid more or less orthogonal to this  ellipsoid

right , then in those directions right. If you try to project along this vector for instance

from this vector right.

Now on this vector the points will be bunched up right would be very bunched up. So,

then random partitioning does not really I mean then doing this bucketing along this

direction does not really work that well it  is not I mean because all distances I mean



distance from here and here right distance in these 2 points right gets bunched up in a

very I mean points that are really far apart potentially come to come very close right.

So, basically it sort of a it does not it what it means is that practically what would happen

is that for is hash table that is created by projecting along these directions right. Only a

small number of hash buckets will contain all the data. So, this is not really nice ok. So,

ideally if I knew that my data has this particular structure right. Then I should exploit this

and  say  that  I  should  be  choosing  the  partitioning  along  I  should  be  choosing  the

projection vectors along these directions. Not along vectors that are orthogonal to the

subspace of the data more or less orthogonal to the subspace of the data right.

So, how do we exploit this? So, how do we formalize it right? So, so one way that this

has been studied is to say that is to look at lsh as a coding problem. In sense that what are

we doing what we doing is that we are taking this points in Euclidean space right and we

are assigning let us say binary codes to it right. So, we could as well imagine the as well

imagine the lsh indices to be assigning bits right. I mean in the case of the Euclidean lsh

h iq h iq was a was a index, but if we were taking same hash for instance then h iq is

something that is a binary value 0 or 1 or a plus 1 or minus 1 equivalently right.

So, let us imagine that that we are assigning binary codes right. And what we want is that

nearby points should get nearby codes, what is nearby mean. So, the notion of nearby

that is the, that is sort of valid in binary is that of hamming distance. So, just to recall

what hamming distance is that suppose we have 2 binary values 0 1 0 1 0 0 1 0 and 1 1 0

1 1 0. Then the hamming distance between them is the number of positions right that

they differ on for instance here and here right.

So, the hamming distance is 3 between these 2 between these 2 binary vectors.

So, what we want is that points that are closer let us say these 2 points should have

hamming (Refer Time: 07:28) should have vectors that are close in hamming distance

and points that are far apart for instance these 2 right, should have bit vectors that are far

apart in hamming distance. And if I have this formulation right why not use the property

of the input data set because the input data set is already with us right. So, then the

question  is  that  can  I  try  to  find  out  such  binary  codes  by  solving  an  optimization

problem right.



(Refer Slide Time: 08:00)

So, we write down the optimization problem, let us see what are the properties of such

binary code that we wants number one is fairly obvious that the binary code should be

easily computable right computing it computing the binary code should not take I mean

should not be very computationally  expensive.  Secondly, it  should preserve distances

approximately, that is the entire sort of property of lsh right.

So, the locality sensitive hashing preserves locality that in it sort of I mean we know that,

we  know that  the  probability  of  collision  right  which  means  that  the  probability  of

having the same smaller hamming distance right is proportional to the distance between

is proportional to the distance between the points. If the distance is small property of

collision is high, if the distance is large property of collision is low and lastly it should

also have a small number of bits because the number of bits directly translates into the

number of buckets right for instance, if I have k bits that says that we need 2 to the k

buckets more or less right.

So, the number of bits is should be more or less small what it further also implies is that

the bits need to be independent of each other, right for instance if you take if you take

one I mean if you take I mean if you take projection directions, that are this and this

right, let us say let us say v 1 and v 2 right. So and you could imagine the projections of

points  along v  1 is  really  sort  of  close  to  it  is  projection  on v  2.  So,  v  1  and v  2



information theoretically, they capture the same information about the distance between

2 points a very similar information right.

So,  we do not  want  such vectors  v  1  and v  2  we want  them to  be  independent  or

uncorrelated to with each other as much as possible right and also it makes sense that we

want the we want the bits to be biased unbiased which means that for about 50 percent of

the points there should be every bit for about 50 percent of the points it should be plus 1

and about 50 percent of the points it should be minus 1. So, plus 1 or minus 1 or 0 1 I

will keep referring to both of them.

(Refer Slide Time: 10:13)

So, in order to do this, let us try to create an optimization problem right. And let us deal

with a specific value of similarity. So, this is called the Gaussian kernel. That supposing

W ij supposing x i are points in rd ok. So, of course, you could define a similarity by

taking let us say the dot product between them, but here is a nicer notion of similarity,

which says that W ij is defined as the first you take the distance between xi and xj the l 2

distance right. And then you define the similarity as exp of minus x I minus xj whole

square by s.

So, this s is kind of like that radius right at which you are you are interested in sort of

considering similar points. What it means is that if xi and xj if the distance between xi

and xj right  is  more or less of the order of s  right then this  W ij  gets  a high value

reasonably high value right. If x if the distance between x and x j is much much bigger



than let us say omega s, then W ij gets quickly gets to be small right. Because this is the

let us say the I mean if this is let us say some c times s the W ij gets to be exp of minus c

right which means that it decreases exponentially ok.

So, this is called the Gaussian kernel and this, and let us take this notion of similarity

between points. Let us say the wi is the code word for point i right which means that that

I mean yi is a code word for point i which means that yi is a bit vector let us say of

length k. So, k is going to be fixed beforehand. So, then it is not very hard to see that y I

minus yj the l 2 norm square also equals hamming distance between i and j ok.

(Refer Slide Time: 12:15)

So, the average hamming distance between the points is now is the summation the ij W ij

times y I minus yj whole square ok. So, and each y I is is a bit vector of length k and I

say that we will either denote them as 0 once or it is for the optimization purposes it is

easier to denote them as minus 1 and 1. So, that is what we will go with and each bit

should be unbiased right. What it means is that let us say let us say k equal to 3. So, so y

1 which is the bit vector for the item 1 is plus 1 plus minus plus y 2 should be minus plus

y 3 plus minus plus minus and so on and yn.

So now if you add up the yis, for every coordinate these should sum up to 0. These

should sum up to 0 for every coordinate k equal to 1 2 3. This is k ok. This is what this

equation means the summation iyi is 0 right. So, this is 0 is really of length k a vector of

length k here. Now we also want the bits to be uncorrelated right, which means that what



we want is that the y i transpose y i the covariance matrix, you look at the covariance

matrix of the bits right and that is identity ok.

(Refer Slide Time: 13:50)

So,  and under  these  constraints.  So,  so  why did  this  come about?  This  came  about

because we do not want let us say that the ith bit the k equal to 1 and the and the and the

second bit let us say that ith and the jth the first and second to be copies of one and other

right. So, we want the dot product of these to be 0 and that is why the identity comes into

the picture.

So, under these constraints that the individual coordinates are independent of each other

and each coordinate is unbiased right I want to minimize this average hamming distance.



(Refer Slide Time: 14:30)

So, whatever. So, why do I want to minimize it? I want to minimize it right because if

you look at this quantity right I want the W i js are fixed right. So now, if a particular W

ij is high which means that the similarity is high, I want yi to be close to yj right. If the

similarity of i and j is high, then I want yi and yj to be more or less similar to each other

the hamming distance will be small right and if the W ij is small then I do not care so

much whether yn and and yj are similar to each other if the if the points are far not very

similar to each other right.

So, and these are the constraints that we have that we have written down the before right.

So,  can  we  solve  this  problem?  So  now, we  have  written  this  down as  an  explicit

optimization problem, can you solve this right. Unfortunately, no although it might seem

like that the this starts looking like a convex programming problem, but this particular

constraint is a combinatorial  constraint right which means that this problem becomes

very hard to solve, this can be formalized in this following way that.
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This problem is even for k equal to 1 right this is an NP hard problem right.

So, if you if you do not remember what are NP hard problems, NP hard problems are

problems that you can guess and verify the solution in polynomial  time,  but without

resolving the question P equal to NP, you are not expected to get a algorithm for this for

an NP-hard problem right.  That  sort  of getting  a  polynomial  time algorithm for  this

would be equivalent to solving the I mean would be equivalent to solving the (Refer

Time: 16:33) NP question. So, and the corresponding NP hard problem that we resolved

that we that we use to show the to show that our problem is also NP hard is this problem

of called  graph partitioning,  which is  a  problem in  which  we have we have  we are

partitioning the set V of G into 2 sets A and B right.

So, intuitively because there is one bit here, this is the this is the and then that particular

bit is going to determine which elements fall in A and which elements fall in B. So, what

we will and what we will do is what this graph partitioning problem says is that we have

2 sets A and B and we have we have the values can we try to partition the set of vertices

into 2 sets A and B right such that we minimize the edges crossing the cut ok.

So, normally if I did not have this constraint, then this is an easy problem, but under this

constraint that the size of the 2 sets have to equal right this becomes an NP hard problem

called balanced partitioning. Ok now what I mean if you want to show that if you want to



show that our problem is also NP hard right you have to reduce this graph partitioning

problem to our problem right.

And while we are not going to go into the explicit reduction the intuition is that, you can

model this graph partitioning problem as the optimization problem that we just saw right

and the bit yi, because there is only one such bit right. Now is going to tell us whether a

bucket whether a vertex should be put whether a vertex or a point should be put in the set

i  or in the in the set  A or in the set  B right and this  optimization problem and this

minimization problem is exactly our objective function exactly (Refer Time: 18:29) our

objective function within a factor exactly (Refer Time: 18:31) objective function.

So, then this in some sense is exactly the problem that we are solving for k equal to 1.

And we and thus we do not hope to solve eva polimental algorithm for this.

(Refer Slide Time: 18:43)

So, what do we do in such setting? There is a standard trick which is to say that we relax

the  problem.  So,  what  is  relaxing  mean?  Relaxing  basically  means  dropping  some

constraints right and the most obnoxious that we had was the one that said that the yis

have to be in minus 1 all of them have to be minus 1 or plus 1 that each coordinate has to

be minus 1 and 1 right.

So, I haven’t introduced this notation before. So, I am calling y the code matrix. So, y is

the matrix where every row yi right is really the code for or the binary code for the point



i or the for the data set for the for the data point i right. And so, yi is of dimension n by k

n by k it is much easier to write if it this way also here I have defined the diagonal matrix

D where D i i is the is a summation j W ij.

So, the matrix D minus W right is also known as the Laplacian matrix, but that is we do

not need to go into that right now. So, then I mean with these new definitions we can we

can write down the our objective function right as the trace of this matrix y transpose D

minus W times y. So, if you do not remember the or the definition of a trace the trace of a

matrix is really nothing but the sum of the diagonal elements right.

So, if you it takes a little bit of algebra to see that if you calculate y transpose D minus W

times y you get exactly this objective function and the other 2 constraints that we had

before boil down to saying that y transpose 1 equal to 0 right and y transpose y is identity

because I mean the that that is exactly the matrix form of the 2 constraints that we had

before and we are dropping the constraint that y is are in minus 1 1.

So now the ys can contain real numbers ok.

(Refer Slide Time: 20:47)

So now if we drop the constraint, this problem becomes surprisingly similar to what we

to something that we have seen before.  And it  is  the eigenvector  problem right.  The

above problem that we that is this particular problem is solved by taking y to be the

smallest k eigenvectors of D minus W right except one with the value 0.



So, if you know anything about Laplacian you know that if you know if I take the matrix

D minus W right this is a positive semi definite matrix right. So, all it is eigenvalues are

greater than equal to 0 it does have an eigenvalue at 0 which is given by the all ones

eigenvector right. And then and then everything else is non negative right. In fact, strictly

bigger than 0 if under some connect under some simple constraints ok.

So, what we are going to do is that we are going to drop the eigenvector that is all ones

right because that does not have any meaning and then we are going to take the next

smallest k eigenvectors of D minus W right the next k, k of them and this will be my y

ok.  So,  ideally  we could  take  this,  but  remember  we needed finally, we needed  we

needed plus 1s and minus 1s right.

Now each of these eigenvectors now because this is positive semi definite matrix each of

these eigenvectors again are orthogonal to each other. And therefore, they are orthogonal

to the all ones matrix to the all one sector, which means that each of these eigenvectors

satisfy if y is an eigenvector then if yi is the ith eigenvector then y i satisfies yi transpose

one equal to 0 which means that summation yi equal to 0 summation y ij. Summation

over all j is equal to 0 right and this starts looking like the this starts looking like the

constraint that we had before ok.

So, what we could do is that we could we could take this eigenvectors and we could

threshold them right we could threshold them at 0, that any coordinate if an eigenvector

comes out to be let us say 0.8, minus 0.2, 0.7 minus 0.9 and so on and so, forth then this

is converted to 1, this is converted to 0 this is converted to1 this is converted to 0 and so

on and so, forth or 1 and minus 1 let me go with one and minus 1s here 1 and minus 1

plus 1 minus 1 and so on and so, forth. So, this is my quantized y i we could always do

this, but this is a slight problem right that what do we do when I get the query point right.

Because the eigenvectors depend on the entire data set once the query point comes that

you have to recompute this entire thing right because the query point was not there in the

data set when we compute to that I eigenvector. So, the Eigen vectors change, but I do

not want to do this because that takes up a lot of query time ok.

So, then the paper by this and this and this was a this entire formulation was by here way

said all. So, what they said is it that they went about it in a very clever way we said that.

Let  us  imagine  that  the  data  points  are  that,  we  have  a  really  samples  from some



distribution and the query is also a sample from that distribution ok. And what I am

really looking for is by using the eigenvectors that I calculate from the from the from the

query from the training set or from the from the query points or from the data points are

given to me, can I create eigenvectors or Eigen functions of the underlying distribution

right, that these data points have been drawn from ok. So, how do we do this?

(Refer Slide Time: 24:37)

 

So, you could do this  is  very hard if  it  is  a  general  distribution.  If  I  do not assume

anything about what the distribution of the data points is this? This is a hard this is not a

trivial question. In fact, I mean some of you might have heard about it, but we could try

interpolating we could try a method of interpolation of the eigenvectors. So, the query

points and this is known as Nystrom extension right, but this is also computationally

expensive so. In fact,  it  is as computationally  expensive as doing a as doing a naive

search itself.

So, we do not want to do this. So, what we instead go about is to say that we make a very

simple assumption about what the data distribution is. We see that the data distribution is

really just a product of uniform distributions that is what we say is that let us say we are

drawing a data distribution in 2 D, we say that in 2 D if the data is 2 D it really comes

from product of 2 types of distributions it is it lies between some I mean, it is a uniform

distribution between some A and B on one of the axis and a uniform distribution A 1 and



B 1 on this axis and an uniform distribution between a 2 and b 2 on this on this other

axis.

So, it is uniform in this rectangle A and B right. And I do not know what this rectangle is,

but what we gone assume is that the data is drawn uniformly from such a distribution

that is each coordinate is independent right. And then it is there is a particular interval in

which it lies independent right. And so, I am going to try to use the eigenvectors of the

data points to figure out what the eigenvectors of this  underlying or Eigen functions

really of the of this underlying distribution r ok.

So, one other sort of twist that, we do is to say that fine, maybe these axes are not known

maybe this axes are not the input axes right. What we say more accurately is to is that.

(Refer Slide Time: 26:43)

That suppose the data lies is something like this right then let me try to find out some

axes right, that first best fit best fit the data and in this axes along this axes, I assume that

the data is uniformly distributed.

So, let me draw you a picture first of all let. I will draw you a picture. So, for instance if

the data lies something like this is something like this right.
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Then what we do right is to first find the axes the main axes of this data the 2 main axes

of this data which means the 2 eigenvectors of the of the principle directions right. And

then we assume that the data is uniformly distributed along this axes and along this axes

and why is that useful? That is useful because going back.

(Refer Slide Time: 27:33)

That as I was mentioning that if we do have the uniform distribution right, in a particular

in the in r 1 right we can actually as n tends to infinity we can actually calculate the

Eigen functions,  which  are the limit  of  the  eigenvectors  as  n  tends  to  infinity  for  a



particular distribution see. Imagine that you are you have the uniform distribution in a to

b and you keep on sampling you keep on sampling these keep on sampling points from

here right.

And then you look at the corresponding eigenvector and you let that and you and you

consider n tends to infinity. So, that becomes a function right instead of I instead of a

vector a function for every point. And if the data distribution is uniform we can actually

write down the form of this function. And we takes a very simple form actually right for

instance if the data was uniform in a to b right.

So, the height of the data is 1 over b minus a if the data is uniform is drawn from the

uniform distribution from a to b , then the Eigen function for this the kth Eigen function

for this is nothing but this particular expression sin pi by 2 k pi b minus a times x ok. So,

notice that it only depends on this interval b minus a on the size of this interval b minus

nth nothing else and the kth eigenvector value is this quantity ok.

So, so here in this plot I have drawn the 2 D, I mean here, here I was assuming that the

points are drawn from uniform in 1 D if the points are drawn in uniform from 2 D the

Eigen functions would look like this is kind of a heat map ok. So, so what we will do is

then as follows, as I as I mentioned that the input data is given and the target dimensional

it is given first we find out the principle the k principle axes of this its. So, these are the

top k axes. So, here k equal to 2 ok.

So, and then we find out the ai bi for each axis right which are these 2 limits. And these

let say in these 2 limits in this direction. And these 2 limits in this direction right and the

way you could find this out is let us say I find by finding on the 5 percentile and the 95

percentile of the data in each of the dimensions right. 

So,  this  gives  me  and  now  we  are  assuming  that  the  data  along  this  dimension  is

uniformly distributed in this region ai bi right. So now, along each of the directions we

create phi one k to phi k x phi 1 x to phi k x right this gives me k eigenvectors in each

direction right and the corresponding eigenvalues lambda I 1 to lambda I k.
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So, that is a total of dk eigenvalues. So, we sort them and take the top k eigenvalues and

the corresponding eigenvectors. So, from dk we go down to k ok. So now, I have and

now I have a bunch of a bunch of directions and some Eigen functions have chosen in

each of them right.

So now, when the query point comes we are going to project the query point on exactly

those axes we I mean and we are going to take the Eigen functions that have been chosen

and we are going to just plug in the value of the query point the. So, the x of the query

point right remember here, here this phi k this phi k function depends on x. So, we plug

in this value and then we quantize it and then we get the bit value of the query point for

this direction the kth bit value of the query point.
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So, the algorithm in it is essence is very simple right. It just involves taking principle

components and then and then doing a very simple calculation.

(Refer Slide Time: 31:13)

It turns out that this is surprisingly effective. So, here is I mean here is another plot taken

from the paper, in which they actually take a very a pretty large data set called a label me

data set and they compare naive lsh. So, this is the naive lsh algorithm this is a spectral

hashing algorithm with only 10 bits, this is yet another machine learning algorithm and

we are plotting the number of bits versus the versus in some sense the what fraction that



if  I take a hamming distance of less hamming distance of 2 right what are the good

neighbors that, that captured right within that actually fall within a hamming distance of

2.

In some sense we recall at to recall at to and they and they and it shows that the recalled

for spectral hashing is much much higher than that of lsh they also show a bunch of

anecdotal examples.

(Refer Slide Time: 32:05)

And there since there has been a large literature on learning the hash codes rather than

using random projections  and the many different  slightly  variations  variations  of the

ways  this  has  been  formulated.  Unfortunately,  most  for  most  of  them  theoretical

guarantees are not available for such data dependent versions of the lsh right.

I mean there are some recent papers that point to analysis techniques that bridge theory

with practice and this is an interesting research direction. Another issue is that the time to

calculate projections is also higher right because it takes a lot more time to calculate pca

than to actually do any projections, but this is something that we will also look at in the

next in the next few lectures of the course, that how can we calculate pca in a much more

efficient manner.
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Finally, the primary reference for this lecture is spectral hashing is the spectral hashing

paper by Weiss Torralba and Fergus. There is also a very nice set of lecture notes I mean

lecture notes comes slides on learning to hash, if you search for learning to hash tutorial

and we will also put this up on our course home page the very nice set of pretty extensive

survey a hand.

Thank you.


