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Welcome to the course on Scalable Data Science. I am Anirban from IIT, Gandhinagar.

And today we will be talking about Multi Probe LSH.
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So,  we  talked  about  the  problem of  finding  near  neighbors.  And  just  to  recap  this

problem. We are given a set of data points. Let us say x 1 to x n that lie in some d-

dimensional space. We can pre process this data set as we want. And then at the query

time we are given a particular query point q. So, our question is that we have to answer

what is the nearest data point to this query right. And then there are various versions of

this question. We could be asked the question of finding out the K-nearest neighbor to

this given query or we could be asked a question that given the query point and the

radius r return me any point that lies within radius within the distance r of the query point

q.
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So, we also looked at the problem of we also looked at the algorithm of locality sensitive

hashing as a potential solution to this problem right. And again just to recap this what we

are given is we are given the version of the nearest neighbor problem, where the input

radius is also specified right. So, now, we are solving an approximate version of this. So,

we  are  given  a  radius  r  the  input  data  as  well  as  an  approximation  factor  c  and  a

confidence delta ok.

So, what we have to written is the following that if there is any query any point in your

input data that lies within distance r of the query point right, then with probability 1

minus delta you have to return 1 that is a distance at most c r. So, c here could be is

bigger than 1 right. So, we are returning an approximate near neighbor right. We do not

need to return anything that is that is less than equal to r, but we certainly need to return

any point that is less than equal to c r.
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So,  how did  we do this,  what  we mentioned?  And let  us  think  about  the  when the

distance metric is the Euclidean metric for now ok. What we said is that there are two

main parameters of the locality sensitive hashing. First is k and the other is L ok. So,

what do we have to do, so we will build l different hash tables right. As in this picture

will build l different hash tables. And in order to create one hash table one of this hash

tables we choose k hash functions right. Let us say we are building the ith hash table.

Now, for that we need to choose h i 1 to h i k right. And each of them are IID and then

being chosen from some hash family.

The hash family depends on the particular distance metric that you are interested in we

talked  about  a  number  of  different  kinds  of  different  kinds  of  metric  and  there

corresponding hash families. If you do not, if you do not remember all of them just think

about the Euclidean metric and the corresponding hash family. Now, for the Euclidean

metric this is what we were doing. So, if we had the point, if we had if we had the input

points, we were first drawing a line a random line in space right. Then we are projecting

that  line,  then  we are  projecting  the  input  point  onto  that  line  right.  So,  this  is  the

projection of the point in this of this point on this line. And then we bucketised right.

So, we created these intervals of intervals of size w right and then and to return the id of

the interval that this projection lies in ok. This is one of our hash functions h i 1. So, this

gives me an interval number ok. And you have to create do this k times. And then you



have to concatenate them that creates that gives the index for the ith hash table right. So,

the ith hash table is created by putting the point x in the bucket that is specified by this k

table ok. So, of course there are potentially a lot many number of buckets, not all the

buckets will have points in them. So, after we have created the hash i d for all the points,

what we will do is that we will store these non empty buckets in a normal hash table that

is we will use just a standard hash table to actually store the to actually instantiate the

table h i ok.

(Refer Slide Time: 05:09).

Now, what happens at query time, at query time again we will do the same. Given the

query q we will find out which bucket q lies in the first hash table which bucket q lies in

the second hash table, and similarly for 1 to l right. And then we will take the union of

these candidates right. In the sense that we will take all the points that have fallen in the

bucket H 1 q, all the points that have fallen in the bucket H 2 q and all the points that

have fallen in the bucket H l q.,we will take the union of them.

So, remember these buckets are not necessarily disjoint, because H i each H i contains all

the data points right. All the data points have been mapped l different times. So, so H i

and then you take the union of H i 1 q, H i 2 q, H i 3 q, up to H l q right. So, these are

your candidate near neighbors. Now, not all of them will be at distance less than equal to

c r. So, what you will do is that you will go over this list of candidates. You will then

compare each of these candidates to q itself. And throw away the ones which are further



apart which are whose distance from q is more than c r right. So, then there are two

issues right. So, the complexity the query time complexity depends on the number of

candidates ok. And the space of the algorithm is proportional to l which is the number of

hash tables ok. And our aim is to create it is to try to minimize these two ok.
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So, as we saw that there are a number of interesting space time tradeoffs that locality

sensitive  hashing  does.  And  more  importantly  what  it  does  allow  us  is  to  do  the

following that it gives the first provably sublinear query time algorithm for approximate

nearest neighbors ok. So, so if you remember that what we could do is to set that L equal

n to the rho. And we could and we could also have a query time which is order n to the

rho right. And rho is typically a function that that depends on c ok.

It could look like something like 1 to the power 1 plus 1 by c sorry yeah it depend n the

power 1 plus rho, and rho depends on 1 by c order 1 by c ok. So, the space is n to the

power 1 plus rho, and the query time is n to the rho, and rho is of the order of 1 by c. So,

while theoretically this is a breakthrough in practice it has its problems. So, what are we

doing here, we are trading off space with time right. Remember that the knife solution

was to do a linear search. And a linear search space required would be n.

So, we are trading off space with time. And we have a strongly super linear space ok.

And even in  practice  this  shows the  space  required  by  a  standard  a  typical  locality

sensitive hashing data structure is of the order of 5 to 20 times more than the more than



the memory taken for the data set itself. And this is sometimes a problem right, because

the data sets are typically very large. And frankly while I mean theoretically it is a it is a

it is an excellent algorithm and has found a lot of practice.

Most  of  the  practical  applications  have  lied  in  the  regime  of  when  the  when  the

dimension is medium to high, when the dimension is of is of the order let us say from

100 to 1000 of that outer ok, and the vectors are fairly dense right; in that setting the

space required the space time trade off that is achieved by the locality sensitive, by the

locality sensitive hashing algorithm compares very favorably to the space required, and

the time required for standard linear space right for standard linear search right for the

knife linear search.

Beyond this if the if the dimension becomes very big or the data set, becomes very sparse

knife  search  typically  just  beats  localized  sensitive  hashing  algorithms.  There  is  an

interesting sort of an interesting set of research here. In the sense that if you look at the

recent  lot  of  recent  advances  in  machine  learning,  there  really  trying  to  get  dense

embeddings for sparse vectors  right,  and in  that  sense locality  sensitive hashing still

continues  to  be  a  very sort  of  appropriate  technology for  different  machine  learning

algorithms.
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So, can we do better right? And since space is our main concern what we want to see is

that can we reduce space. We have to do some tradeoffs. So, can we reduce space by



while not affecting query time by too much that I am willing to pay a little more, when

we are doing the query right. Not as bad as a linear search, but maybe a little more than

what I am sort of promising in the locality sensitive hashing algorithm, but I would not

reduce the space drastically right.

So, so idea the basic intuition behind such data structures is to put multiple times right.

So, imagine the sort experiment that suppose for a query right. We knew that which are

the buckets  that  have the highest  probability  of containing  the near  neighbor of that

query ok. So, natural  algorithm that knows these probabilities  for then go and probe

these buckets right. So, the standard locality sensitive hashing algorithm is probing only

1 bucket per hash table. This ideal algorithm if it knew that some other buckets have

none have a non trivial probability of containing the of containing the near neighbor, it

will also probe that other bucket. So, it could probe multiple buckets per hash table can

we implement this algorithm.
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So, the basic problem is as follows right. So, how do we know this particular probability

distribution ok? So, computing this probability distribution is as hard as really doing a

linear search again.  So, can we can we approximate this probability  distribution in a

smart  way. And this  is  the  basic  elegant  idea  behind  entropy  based LSH.  This  was

developed by Rina Panigrahy in 2006.



So, what it says is as follows that assume we know the distance R p q. So, so here is the

query point, and this is the nearest neighbor p and this distance is R p q, and assume that

we know this  distance  ok.  What  see,  the  intuition  is  that  the  buckets  are  a  random

partitioning  of  the  data  right.  And  this  random partitioning  happens  as  follows  that

suppose here is the data right. Now, based on the particular based on the hash functions

that were chosen the data gets partition like this ok. So and because of the properties of a

locality sensitive hashing algorithm the success probability of a bucket right that is the

probability that this bucket contains the point p right, depends really on the distance R p

q ok.

So, ideally if I can sort the buckets with this probability right, if I if for every bucket, I

could calculate the probability. If I knew R p q right, I could, if I could write on the

probability that this bucket contains the near neighbor p right, and then if I could sort the

buckets with this probability, then I would look at only the top few buckets because I do

not really want to look at all the buckets, because that is too expensive. So, then I would

only probe the top few buckets, and be done with it right, but calculating this probability

exactly is again hard for all the buckets right. It is very expensive.

(Refer Slide Time: 13:30)

So,  what  Panigrahy  does  is  that  he  gives  a  very  elegant  way  to  sample  from  this

probability  distribution  without  actually  calculating  this  probability  for  every  bucket

right. And the way to sample is as follows what he notes is that suppose we take the



query point, and we build the radius R p q we build the ball of radius R p q around the

query point ok. So, and then we sample multiple points at this radius ok. And then we

hash these points using the same set of hash functions right.

So, what he notes is that buckets that, because the probability that a bucket contains the

point contains a near neighbor p is dependent only at the only at the depends only on the

distance  R  p  q  right.  Then  all  points  on  the  surface  of  the  sphere  have  the  same

probability of falling in the bucket or in that particular bucket right, and in that case if I if

I take multiple points from the from the surface of this sphere of radius R p q right, and

look at the buckets that these points fall in right, then the buckets that are more likely to

contain p will come up more often right.

So, what it means is that the algorithm is as simple as follows that take the query point q

right make a guess on the distance R p q sample from the multiple times from the ball

from this from the surface of this ball which is which at the ball of radius R p q around

the query point q, and then look at the buckets that these that these points fall in right.

And, now consider, and this is all happening in a single hash table. And then we take all

the candidates that these buckets have.

All  the  query points  are  all  the  data  points  of  this  buckets  have.  And these  are  our

candidates. So, technically if you even if you have had only one hash table right, you get

to probe multiple buckets, and consider their candidates right. And Rina has a very nice

theoretical guarantee on this entropy based LSH. We would not go into the details of the

theoretical guarantee, however.

Student: (Refer Time: 15:53)
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What we will look into is a modification of the scheme ok. So, the modification of this

scheme is  something called  multi  probe LSH. And this  is  really  the same idea  in  a

slightly more efficient manner. What it says is as follows that look sampling from the

sampling first from the surface of the ball, and then and then looking at the at the at the

at the hash buckets is pretty expensive. What we will do instead is that we will look at

the bucket that this query point has fallen into. And then we will perturb the idea of this

bucket a little bit right.

So, what does this mean let us look at this in the in a very specific case, when we are

when we have a LSH, when we are building a LSH table for l 2 right. Remember what

we were doing there we were taking a random line right. This is the line v right; this is

the query point; first we project q onto v right. So, this is q dot v and then we bucketize

them in buckets of size w, and apply a random shift. So this is a shift right that is drawn

uniformly from 0 to w ok.

So, the so the hash value of q is this i d the i d of this bucket ok. So, then imagine that

there is some other point p that is actually predict near to q ok. So, then if p has not been

assigned the same idea as that of q right, then it is likely that it falls maybe either here or

here that is if is not in the same bucket as q then, it is likely that it is in a neighboring

buckets right, which means that the that the 2 buckets that if I do not find if p does not

happen to be in thus in this bucket h v b q right.



Then it is probably being assigned h v b q plus 1 or h v b q minus 1. These are two

immediate sort of possibilities the most likely possibilities of the hash value of p under

this hash function right. So, this is what we will try to face that instead of actually doing

the perturbation on q and then figuring out for the hash buckets should be we will do the

perturbation directly on the hash indices itself ok.

(Refer Slide Time: 18:30)

So, so just to be very specific right supposing k equal to 3 ok. So, the first hash table has

buckets that are tuples of 3 has i d has bucket i ds that are tuples of 3 ok. Supposing H 1

is the first hash table. So, and suppose q falls in H 1 of q which is 5, 8, 3. So, then the

immediate next ones would be have to look at 5 plus 1, 8 3, 5 minus 1, 8, 3, 5,8 plus 1, 3,

5, 8 minus 1, 3 you get the idea ok. And these are the and these are buckets are differ in

only one of the positions from the query bucket.

Once we have exhausted them, and looked through them. Then we could also start to

look at buckets at different two positions right. Maybe 5 plus 1, 8 plus 1, 3, 5 plus 1, 8

minus 1, 3 and so on and so forth ok. And then buckets that differ in three positions and

so on. And this would eventually give me all the buckets right that differ in at most let us

say, s positions ok. So, then, so, how do we do this in a sort of principled way ok? How

many buckets do we e get two should we should we really be searching for and is there a

particular order in which we should between these perturbations and so on. So, in order

to analyze this, let us formalize this a little bit right.
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So, let me consider this delta called delta to be a perturbation vector. So, it is something

very simple right. So, suppose in the case when k equal to 3 right, the deltas look like let

us say minus 1, 0, 1 plus 1, minus 1, minus 1, 0, plus 1, minus 1, 0 and so on right which

means  that  it  is  it  is  basically  all  possibilities  having  where  each  bucket  is  being

perturbed either by a plus or minus ok. And there are k and some bucket might not be

perturbed right in that case some bucket id might some specific id might not be perturbed

in which case you have a 0 in delta.

So, given and given a bucket H q we get a new hash bucket by doing H q plus delta right

and suppose delta has at most S non-zeros. So, this S will be a hyper parameter that is

kind of chosen based on the amount of time you want to spend in query and so on right.

So, for instance think of S equal to 1 right that is I only want to look at buckets that differ

from the original bucket in only one position right. Then what is the and if and for a

general S, then what is the possible number of this delta right. So, the possible number of

this delta is that you have to choose S positions from K positions that happens in K

choose S right. And each of these positions gets a plus 1 or minus 1, so that is 2 to the S

right.

So, once you fix S, the number of possible perturbations you can get is K choose S times

2 to the S. And this is for a single hash table right we could be if there are multiple hash

tables then we should really be doing this independently for each of the hash tables ok.



So, this is fairly large right. Once, once S gets to be a little big this increases quite fast.

So, it is that a natural way to order this buckets for searching right I mean you could you

could potentially sort of already have an idea about this. If you say that once you start

thinking about that that if a if a point if a neighboring point is really close to q, then it is

more likely that it will fall in a bucket of 0 or 1 perturbations than two perturbations.

So, we should really search the buckets with 0 that has at most one perturbation before

we search the buckets that have at most two perturbations maybe. And we should search

one  perturbation  and  do  perturbation  buckets  before  we  go  to  searching  three

perturbation buckets right. But it is there a better way to structure this search?

(Refer Slide Time: 22:44)

So, here is a very interesting way right that was proposed by the by the original paper of

multi-probe LSH. And what  this  says  is  that  let  us look at  let  us  look at  the actual

projections of the points right that is suppose this was a line v that we were drawing

before right. And this is the projection of the of the point q, this is a projection of the

query point q right. So, if i of q so this is the ith, so this is the ith bit let us say ith hash

index id and this is obtained by q dot v i plus b i. So, b i is the random shift ok. 

So, now, v i is chosen according to uniform distribution on this sphere if you remember.

Equivalent way of looking at it v i is chosen according to n zero I d which means that

every index of v I, v i is a vector of d dimensions. So, same dimension as that of q. And

every index is a Gaussian distribution from N 0 1 over square root t ok.



Now, if I know this then I also know the distribution, if some I mean if some point p if

the projection of p is a f i p right, then I can actually write down what is the distribution

of f i p minus f i q ok. So, the so remember that f i p minus f I q is really a random

variable because of the because of the random choice of v i right and b i right, v i and b i

are the random variables here. So, therefore, the distance f i p minus f i q right is really u

transpose v i q minus p transpose v i right this is this random variable f i f i q minus fi p.

And it is if you know if you know about the properties of run of normal distribution. You

can easily say that this particular random variable right this particular random variable

has a distribution of this form that is it has mean zero right and the variance is dependent

on the l 2 norm of p minus q that is on the distance R p, q the variance depends on that

right. So, so which so what; that means is as follows that let me draw the let me draw in

this in here that here is the here is f i q right and I am drawing the distribution of the

random variable f i q minus f i p and. So, it is a Gaussian that is centered at f i q right and

the variance depends on this on the on the norm p minus q ok.

So, so notice so and let  me define two more quantities  let  us say that  these are  the

boundaries remember with bucketize, the bucketize these projections right into buckets

of length w right. So, so let us say that these are these are the boundaries of this bucket.

So, this is the bucket h i q by definition this is the bucket h i q minus 1 and this is the

bucket h i q plus 1 right and so and so these are the boundaries. So, let us say so let us

say the distance from the distance of f i q to this left boundary is denoted by x i minus 1;

and the distance of if i q to the right hand side boundary is denoted by x i 1 right.

So, so what you can now intuitively see is that the probability that the probability that

this particular f i p lies to the right hand side lies to lies in the bucket h i q plus 1 will

depend on this distance x i 1 x i plus 1. And the probability that f i p right lies to the left

hand side lies in the bucket h i q minus 1 will depend on x i minus 1 right. So, let us do

this formally right. And by doing so we will be able to assign some kind of likelihood

some I mean we will be able to estimate the success probabilities of each of the buckets h

i q minus 1 and h i q plus 1 ok.
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So, if I have to write down this probability right, you could say that the probability that h

i h i p is i mean because this is normal distribution the probability that h i p is equal to h i

q plus 1 will then depend on exactly the PDF of the normal distribution, which is exp of

minus some C times x i plus 1 square because this distance and the C will depend on the

on the radius also ok. So, so that means, so what; that means, is that the C will depend on

the distance p minus q right. So, what that means is that now we can assign success

probabilities to the perturbations plus 1 to the perturbations plus 1 and minus 1 for this

particular index h i q ok.
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Let us write down this in a slightly more formal. Again that supposing the perturbation

vector capital delta is delta 1 to delta k. Remember that each of the delta is either minus

1, 0 or plus 1 ok. Then what I could write down is that the probability that h i p equals h i

q plus delta right is nothing but the product of the probabilities because each the for each

i the hash function h i is independent of each other. So, if the product of the probabilities

that h i q equals h i h i h i p this should be p h i p equals h i q plus delta i and again delta

is either minus 1 or plus 1.

And by the previous calculation that we did that this depends on really the distance of f i

q of f i q from the corresponding boundary right, which is given as x i delta i right. So, it

is the product I mean this can be this can be I have kind of hand waved this a little bit,

but this can be written as a product of the exponentials of minus C x i delta i square

which the product translates to the to the exponent, and we give and we get a exp of

minus C summation x i delta i square right. For instance if delta is plus 1, 0, minus 1, you

would get x 1 plus 1 square plus x 2 0 square plus x 3 minus 1 square ok, this would be

the exponent. So, now this allows us to define a score right.
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A score for each perturbation vector delta right; and that score just depends on this on the

quantity  in  the  in  the  exponent  right.  Because  we  want  to  maximize  the  success

probability you gone to minimize the summation the summation x i delta is square right,

because if this is minimized right, then the success probability will be maximized, the



lower the score the higher the probability of p being in this bucket. So, then what we do

is to order buckets by this score and search them in this in this order.
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So, in a particular query q arrives right, we then create the order in which the buckets and

I mean we then want to sort the buckets according to the score delta right. And remember

that the score delta depends on the query q. So, how do we do this efficiently? First we

calculate the x i plus 1 and x i minus 1 square for i equal to 1 to k and then we sort them.
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So, let us say that the sorted values as z 1 to z 2 k. So, there are 2 k values because each

index gets either a plus 1 or minus 1. And beyond that it is really a sort of mean hib

based algorithm right. Basically what we will do is that let us say that i equal to one right

has the minimum x i delta i right the z 1, the z 1 one contains the minimum x i delta i of

these of these values. So, then we start with that right.

And then we either at every step we either keep on expanding that right either add the

very next one right I mean for instance if 2 is the next highest, if 2 is the next smallest

value, either we go from the set one which is the bucket id 1 to the bucket id 1 2. So, it is

a bucket id 2 would be the next one to explore or we go from bucket id 1 and we replace

that by bucket id 2 right.

So, at every step right so we could define a search procedure in which at every step we

either go to replacing the max of the max the max value with the next max value or we

augment it with the next max value right. So, this gives us a way to search through all the

possible buckets right. So, we first search bucket 1 and then we either first search bucket

1 or bucket or bucket, bucket 1 2 together and so on and so forth ok. So, in practice, we

kind of have a query time budget and we stop after that ok.
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So, in terms of experiments what this shows is that this is something that has been that is

really that effective in reducing the space. For instance, I will just point you to one of the

plots in one of the plot in the in the y-axis is the recall which means the fraction of near

neighbors that we have been able to you know let  us say the fraction of the nearest

neighbors that we have been able to return using LSH. And on the y-axis is the number

of hash tables.

If you see that the multi probe plot right uses much less hash tables than let us say the

basic LSH plot right, and for the and it is able to let us say this point right. So, so using

the same number of hash tables this gives a much higher recall or rather if you want to

look at it this way that if I want to achieve point nine recall number of hash tables we

need here is let us say only 6 or 7 number of hash tables we need here is of the order of

32, 33 and the basic LSH ok.
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So, just to summarize the LSH is a powerful technique, but the few areas of concern,

memory usage among them. The entropy and the multiple of LSH elegant solutions that

are very useful in practice, and they and they also form part of the state-of-art locality

sensitive hashing system. And the basic intuition that you should remember is that we

want to probe multiple buckets in a query-dependent manner.
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Primary reference for this lecture was this paper by on Multi-Probe LSH by Qin Lv,

Josephson, Wang, Charikar and Li which appeared in VLDB. And also the paper by Rina

Panigrahy on the entropy based LSH and.

Thank you.


