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Lecture -12 b
Building LSH Tables

Welcome to the lecture of Scalable Data Science.  Today will talk a little more about

locality sensitive hashing; in particular will start to see how to build hash tables out of

the locality sensitive hash functions that we have been discussing right.

(Refer Slide Time: 00:33)

But I start with just to review this was the problem of finding near neighbors, and we are

trainable data structures that answer a queries like what are the K-nearest neighbors and

what and give me the list of candidate nearest neighbors within the particular distance

may be ok.
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And our the tool that we focused on is are these kinds of hash functions right, but we

have say this that suppose we have a similarity function right, and similarity function is

something that takes any 2 objects right and intuitively gives us the similarity between

these 2 right. And mathematically we can say that it satisfies a few simple properties like

a s of x y equal to 1 if and only if x equal to y and s of x y equal to s of y x. So, given

such a similarity measured, we never asking the question of does there exist some hash

family, h such that we can choose let  say uniformly for now let  say uniformly from

random from this hash family. 

And so, that the probability over the choice of h, the probability that a h of x equal to h

of y the probability that any 2 x and y collide right that that h puts in the same bucket is

equal to the similarity of x and y exactly equal to the similarity. So, and the we were

wondering whether such hash families even exist. So, we have seen at least for 2 such

families; for instance the angle base similarity as well as the hamming similarity. At least

for 2 such similarities we have seen that we have proven the existence of such hash

families.  In  the  lecture  will  investigate  a  little  bit  more  about  some other  similarity

measures, and then we see how to actually use this families such hash families.
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So, the first distance the first distance of similarity measure that we are considered is

Jaccard distance right. If you remember if you do not remember a Jaccard distance was it

was this is very simple idea, that if you have 2 sets A and B right. The Jaccard distance

between them it is defined as  right as this  quantity right J of A B this is the Jaccard

similarity, not the Jaccard distance Jaccard similarity between A and B is defined as a

intersection B divided by A A union B the cardinality of these 2 right.

So, and we want and this is a similarity measure right so. So, now, we are asking that

does there exist the hash family right that is locality sensitive for this similarity measure

right and here is a solution. And the solution was initially suggested by Anre Broder in a

beautiful paper and then subsequently worked upon by Broder and Micheal marker. So,

the family consider all random permutations of the of the universe U right. So, there are

if the universe size is n, then the n factorial random permutations pick anyone of them a

random pick any one of them uniformly at random right.

So, my hash family is the set of all random permutations of the universe U and I get to

pick any one of them uniformly at random and now I calculate the probability right and

now how do I map a set right? I can say that I map each element of the set according to

this random permutation right I am use an example right now, I map each element of the

set according to this random permutation and take the minimum of these values right.



So, I take the minimum of the elements of the set, the values of h of x ok. So, you can

imagine  you can set  of.  So,  without  loss of generality, we can say that  the universe

consisted of the numbers from 1 to n right.

So, then taking the minimum is actually critical defined and then nice. So, we consider a

random permutation of 1 to n and then take over all elements in the set you calculate the

minimum of h of x.  So,  it  is  often easier  to visualize this  if  we if  you think of the

collection of if you multiple sets, if you think of the collection of sets as a 0 1 matrix. So,

not sort will do let us let us see an example right.

(Refer Slide Time: 05:24)

So, in this example what we have done is that, the rows here are the elements these are

the elements. So, A B C D E F G this is the universe the universe consist of the set from

A to G ok. Now there are 4 sets set 1 consists of the of the elements A B F and G, set 2

consists of the elements C D E set 3 consists of A F and G set 4 consists of B C D and E.

So, I have put in once in those places and zeros everywhere else now consider a random

permutation of this set of this of this universe. So, what is the random permutation? We

just randomly permitted the elements right which means that let us say that I mean A was

still put in the first place, C is put in the second place G is put in the third place and so on

right. So, now, once we randomly permute right let us randomly I mean order the rows of

this matrix according to this random permutation right.



So, if you are worried about thinking about the matrix things about think about only one

column right think about the column S 1. So, now, S 1 had the elements A B F and G

right. So, previously A was in position A was row 1, row number 1 B was row number 2

and then came F and came G. Now according to this permutation, I select to write A as

row number 1, then have to write G according to this order then I have to write F then I

have to write B right.

(Refer Slide Time: 07:17)

So, then if I choose the if I choose what is the min over x belongs to S S 1 h of x right.

So, think of h of x as giving me the I mean instead random permutation, you can also

think of h of x is giving a number right. In the sense that it says that A goes to position 1

C goes to position 2 G goes to position 3 and so on G goes to position 3 F goes position

4, B goes position. This is really the permutation essentially for every slot, it tells you

which is the which is item that I should go to the slot right. 

So, then if you calculate this min of this quantity, that what is the mean of our x belongs

to S 1 h of x, effectively it sort of in terms of this matrix visualization, it turns out that

you need to look at the first row for the column S 1, you need to look at the first row that

contains a 1 right. Because that because the rows are ordered in terms of the in terms of

the h x values the current h x values right and the first row that contains 1, and the row

that contains 1 are the are the only rows that belong to the. The row the rows that contain

a one for the column S 1 at the only row only elements that belong to this set right.



So, therefore, in this visualization, to in this operation could mean that you rewrite you

reorder the rows according to the random permutation, and then for every column you

choose the first row that contains 1 according to this reordering. So, here for S 1 it turns

out to be A which is a number 1. So, S 1 gets map to 1. So, h of S 1 is 1 similarly what is

h of S 2? So, 2 contains elements C D and E right; so, in this order. 

So, if you look at the column of S 2 it still contains the elements C D any of course,

because the sets not changed, but now C is placed first right. So, the so, h of S 2 is really

now C right S 4. So, S 4 might be no interesting. So, in S 4 right now all that contains B

right according to this ordering C comes earlier than B. So, so h of h of h of S 4 is now

also is due to C which is also equal to 2 right. 

So, then the sketches for this element; so, then the sketches for the corresponding sets is

the sketch for S 1 is 1, sketch for S 2 is 2, sketch for S 3 is 1 sketch for S 4 is 1 2 right.

So, according to this ordering the these are the these are the sketch values. Since, but we

had, but will sort of see what it really is in few minutes. So, here is another permutation

it is another permutation right.
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That  suppose now, the permutation  now again if  the same sort  of  sets,  but  now the

permutation is D first then B, then A then C F G and E. So, D is map to 1, B is map to 2,

A is map to 3 and so on. So, what are the sketches of S 1 S 2 S 3 according to this

permutation? Again you now reorder the rows according to this permutation and then go



to the column of S 1. You go to the column of S 1 you see according to this order, which

is  the  first  row  that  contains  a  one  in  this  column  and  that  is  the  row  number  2

corresponding to B.

So, the sketch of S 1 is 2 similarly the sketch of S 2 right is now corresponding to D it is

1. Sketch of S 3 corresponding to A it is 1 sketch of S 4 corresponding to D it is again 1.

So, the sketch of the 4 of the 4 things is S 1 S 2 S 3 S 4 S 2 1 3 1 right sketch of S 1 is 2

(Refer Time: 11:28) I have written down the corresponding sketches in the in the in the

columns. So, this example was taken from the lecture slides of numerators C.
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So, the big question now right why is this locality sensitive hashing ok. So, assign what

we are looking to argue is that, why is this statement true that, if you if I sample a hash

function I random permutation right, and then I define the hash of a S to be according to

this min thing, then why is the probability that h of S equals h of T exactly equal to the

Jaccard similarity between S and T right and again it is a very simple, but very clever

argument right.

So, think of the 2 columns S and T, think of the 2 2 columns S and T. So, look at the

different rows ok. So, rows that rows that are 0 in both S and T they do not really need to

be considered at all right. Because they will never be the h of S will not be one of these

rows and h of T will not be one of these rows. So, might is all through this rows out of

the system. So, the first row right whether one of the two has a 1 that is whether either s



the column S has a 1 or the column T has a 1 or may be both right. At least one of the 2

has  a  one  right  belongs  to  S  union  T right.  The because  that  particular  element  by

definition belongs to S union T right.

And we have a equality only if  that row only if the first row right according to this

permutation contains one in both positions S and T right. That means, for the first row

actually belongs to S intersection T right. What that means, is that we can rewrite the

statement that h of S is h of T only is the same as the event the event h of S is equal to h

of T is a is the event that among all the rows in S union T right. The one that comes up

first according to the permutation that have sampled is a row that actually belongs to S

intersection T it cannot be anything else this is cleared.

So, as what we are saying is that, among all the rows that belong to S union T the row

that that comes up first right is a row that belongs to S intersection section T. Only in this

event will h of S equal h of T also the probability of this events are same right, but

because  the  rows have been,  but  because  this  is  a  sample  uniformly at  random, but

because this is uniform random permutation, the probability of any one of them I mean

there are S intersection T rows right.

So, the probability of any one of them being the first I am S intersection T rows in the

intersection. The probability of any one of them being the first among S union T rows is

exactly S intersection T divided by S union T right. If you have 3 rows in 3 rows in S

intersection 10 10 rows in S union T in a random permutation probability that 1 of 3 right

is the first among one of this 10 is exactly 3 upon 10 ok.
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So, that proof that basically proofs that Jaccard similarity has a locality sensitive hash

family.  But  again  as  a  aside  let  us  talk  a  little  bit  about  how  to  choose  random

permutations  right.  So,  as  per  the  calculation  we  have  been  doing  before,  random

permutation there are n factorial random permutations. So, we want to choose a random

permutation, the algorithm needs at least log of n factorial bits which is like n log n bits

right. 

It needs that much storage in order to save the random keep the random permutation in

storage this is quite a lot right. In theory what you need to define our a familiar the just

like we have been defining small families of k y is independent or k k universal hash

functions, here also you need to define families of min wise independent permutations

right approximately min wise independent permutations.

So, in practice what we typically do is as follows; you take standard hash functions for

instance you take you take m d 5 you take murmur 3, and any fast  reasonable hash

function right and then you hash all the values into let us say hexadecimal numbers or

some strings and then you just sort them right that is all we do. So, there are some studies

that show that there is some buyers that comes into this, but in some it is not very it is not

it is not been sort of shown to effects real life applications very seriously, but this is an

area of active research I must sort of admit that.



It is not a very satisfying solutions if we use hash families about which we do not really

prove anything, I mean you should I mean there are other hash families. And, if you are

interested in this, you should look at the work of Mikkel Thorup for in order to look at

how to sort of create hash families that are fast, that are implementable in a fast manner

as well as a provable properties.

(Refer Slide Time: 17:22)

So, then comes the question that they have been pretty lucky or maybe we have been

pretty choosy in terms of talking about the distance functions talking about similarity

functions right. So, there is a entire wide zoo of similarities and distances that are used in

scientific literature. This actually a (Refer Time: 17:40) called encyclopedia of distances

right. Will there be or encyclopedia similarities also right for instance. So, will there be

an  LSH  for  each  one  of  them  right  does  every  similarity  measure  basically  every

similarity function that satisfies those simple properties, have corresponding LSH right.
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So, let us call a similarity measure to LSHable if there are exists an LSH for it just a

short answer for that and here is a very simple theorem right. We say that a similarity

remember we talking about similarity measures right. We say that similarity measure is

LSHable, this implies that 1 minus S is actually a metric. What is the metric? Metric

satisfies these 3 properties.

So, the d of x y is 0 implies that x equal to y, but this is already satisfied by any 1 minus s

because s satisfies the corresponding property. Symmetry is also satisfied by any 1 minus

s, the big question is this right. The does 1 minus s satisfy triangle inequality and what

we say for this very simple theorem says is that, if s is LSHable then 1 minus s must

satisfy triangle inequality. Or to take it the other way around if 1 minus s does not we can

show that  1 minus s  does not  satisfy triangle  inequality, then we can show that  this

similarity measure is not LSHable according to the definition of LSH that we have given.

Let us start to prove this very small very cute theorem.

So, here is what will do, suppose there is a hash family h then any hash family and. So,

so pick a hash function h belongs to H and define the event. So, we defining 0 1 0 1

indicated random variable. So, that the random variable takes in 3 things, delta h A and B

2 sets A and B. And the random variable is 1 right if h of A is not equal to h of B and it is

0 else. So, it is a 0 1 random variable right. So, now, it is also easy to see that 1 minus S

A B is a probability of h delta h A B right by definition. I mean because I mean that



suppose let us the contradiction, that suppose we say suppose we say that that I mean that

s is LSHable. Well not to leave a contradiction where assuming that S is LSHable and

that is what we go with. So, s is LSHable and therefore, this is true ok.

So, let us let us proceed, but now what you can say is that this particular statement is

true, that the 3 the random variables are the variables in the 0 1 random variables delta h

A B, delta h B C and delta h A C they must satisfy this property then it is easy to see why

right. Because the left hand side right says that A is. So, h of A not equal to h of B or h of

B not equal to h of C. Any one of these events happen then it must happen right. 

So, other let us say the let us say let us argue the other way around; that supposing h of A

is not equal to h of C right then it must be the case then either h of A not equal to h of B

or h of A or h of B not equal to h of C right? Which means that if this if this right hand

side if this delta h AC is equal to 1, it must be that one of the left hand side random

variables also becomes 1; which means that this triangle inequality is satisfied by the by

these random variables.  But  if  that  is  the case right,  but if  that  is  the case then just

plugging in the I mean I mean then just plugging in the expectations.
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The plugging in the fact that this is also equal to the expectation of h delta h AB right we

get the expectation of the of the left  hand side and the right hand side, and then we

immediately get that 1 minus S has to be a metric.
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So, let us look at some examples of non LSHable similarities right. So, so here is I mean

will define a similarity and then we look at the corresponding distance function to be 1

minus d AB to be d A B to be 1 minus s A B. So, the popular one is Sorenson dice. It is s

A B is 2 A intersection B divided by cardinality of A plus cardinality of B it is. So, if you

take A equal to just the element a B equal to just the element b c equal to just the element

a b, you can easily see that s A B is 0 and s B C and s A C are both 2 thirds right or that

means, is that I mean if you take the corresponding distance functions, the distance of

distance of A B would be 1 distance of B C equal to distance of A C would be equal to

one third right.

So, this does not be a triangle inequality similarly another popular one is the overlap

metric, which says that you take a intersection b divided by minimum on the cardinality

of A and the cardinality of B right. Even here for the same example you see that s A B

equal to 0 s A C equal to one equal to s B C and therefore, you can you can you can

calculate the corresponding distance values distance of A B is 1.
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Distance of A C equal to distance of B C equal to 0 right. So, therefore, it does not be a

triangle in equality right. And so, that that simple thing gives you a proof that that there

is no that is that is similarity measures are not LSHable right. So, now we have seen both

example,  we  have  seen  examples  of  similarity  measures,  we  have  seen  a  bunch  of

important similarity measures and we have seen LSH constructions for this and we have

seen LSH we have seen similarity measures certain are not LSHable.

(Refer Slide Time: 24:27)



However we need to go a little further right we need to relax as well soon see that for at

least one more important distance function specifically the set of the set of l 1 l 2 matrix,

we need to relax the definition of LSH that we have right and here is what will do? And

now, we are shifting from defining LSH in terms of similarity measures to defining it in

terms of  distance measures.  Because,  we saw that  being  a distance  being a  distance

metric is actually more important right because be I mean all similarity measures do not

have LSH, but I mean there is it does is the probability of being a distance function at

least, although that is not a sufficient condition, that the necessary condition.

So, we say that a family. So, we say that a family h is small r big R capital P small p

capital P LSH if right if let us say if 2 let us say this is x if 2 if 2 points x and y are

distance less than equal to r small r, then the probability of collision according to h is at

least  p or some p.  If 2 points x and y are at  least  capital  R distance apart,  then the

probability of collision is less than capital P.

So, what  are  we saying now? Restricted relaxing the definition that  we had because

previously  we said  that  no  it  monotonically  decay  it  monotonically  decays  with  the

probability  of  collision,  monotonically  decays  with  the,  with  1  minus  distance  or

monotonically decays with similarity right. So, now, we are saying that no we do not

really bother so much, for points we have 2 radius right I mean these radius will be fixed

based on I mean flip this later based on applications, we have a smaller radius we have a

bigger radius bigger radius is probably constant fraction on the smaller radius.

If the points are closer than this bigger than this smaller radius, then we say then we want

our high probability of collision if the points are further apart from that bigger radius, we

would not have a low probability of collision just these 2 that is it. So, what can we do

with this? 
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So, first of all why did we need this? So it is easy to see that this is the generalization of

the previous definition right. For instance if you take the Jaccard similarity right and if

you take the it is and the corresponding distance, if you say that the Jaccard distance is

less than or equal to r, I mean it is easy to do this line of arguments that says the Jaccard

in that case the Jaccard similarities at least 1 minus r and the previous hash function that

is min wise hash function that we were doing is the probability of collision according to

that is at least 1 minus r. 

Is the Jaccard distance is bigger than capital R right, then the probability of collision is at

most 1 minus capital R. So, then our previous LSH min wise independent permutations,

they gave us a small r capital R 1 minus small r 1 minus capital R LSH that as well as

easy to see.



(Refer Slide Time: 27:47)

So, here is here is one for which we did not I we do not know of any LSH according to

the  previous  stronger  definition,  the  chunk  similarity  definition  there  is  an  LSH

according to this slightly weaker definition. So, and this is the standard Euclidean norm

right. So, suppose we have suppose we have the x and y, we measure the Euclidean norm

as the some square of the distance square root of that. 

So, how they construct an LSH for that? So, we have 3 components first we take a unit

vector u right then we chunk we sort of have a w, and then we sort of build part it chunks

on these intervals in the unit vector of size w right. We also have a b that is decided

uniformly within 0 and w. So, think of this as jittered in the that sort of decides where the

0 of this chunk of each chunk is, it sort of does has a random shift right. So, then the h of

q of a particular the h is now a function of u and b these are the 2 random choices right.

And now h of x is defined as you take the dot product of u x, you add the shift and then

you sort of bucket it by w. 

So, in some sense what you are trying to do is that you are trying see that if I do a

random projection right of this x on to this line u, if I do a random projection on y on to

this line u, what is the idea of the bucket that it falls into right. So, the bucketing is of

size w and it is random shifted randomly shifted bucket. So, you want to see: what is the

idea of this bucket that it falls into ok. So, this is what will try to do, and this is the hash,

this is the hash value for any x. So, why is this an LSH?
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So, I would not go through the exact proof of this, and these numbers are I have written

down on is moral approximate, but basically here is the idea. That suppose you know

that x and y are very similar, suppose you know that x and y are less than w by 2 apart

right. Then this is a very high chance, because then the distance there distance in their I

mean in after projection is also less than w by 2. So, the only way they could sort of fall

in different partitions is because of the random shift, and the probability of that is really

small right you can bound the probability that there is the random shift is less than let us

say if d is less than one third right then they would not really be shift then they will fall

in the same bucket in some sense.

So, this is fine. So, now, suppose x and y are very far apart they bigger than 4 w right.

So, now, if they are falling in the same bucket, which means that if they did fall in the

same bucket which means that the picture something like this. They very far apart, but

maybe  the  random  plane  is  somewhere  here,  which  means  that  that  they  are  their

projection in their in this projected line the distance is not very big. But that means, that

the  direction;  that  means,  something  about  the  direction  of  the  projection  line;  that

means,  of  the  direction  of  the  projection  line  right  has  a  particular  angle  with  the

direction of the line x y right. In fact, it sort of lies in a particular cone around the around

the line x y right and you can bound the probability of that right.



And so, we can make statements that say that that if that if the if the distance is less than

w by 2, then the probability of collision is at least one third, the distance is less than let

us say 4 w then the probability of collision is at most one third; which means that we

have a hash function that is w by 2, 4 w one third, one fourth LSH according to our

previous definition right ok. So, now, what we do with this functions ok.

(Refer Slide Time: 32:00)

So, now here is the problem that we want to solve. Suppose we want to solve an r c near

neighbor problem what is that mean what; that means, is that given a query point q and

the target distance r, I want to return all points that are within this target distance right.

And I do not want you to return any point that is c r away from the target distance right. I

do not want you to return points outside of the c r, this is the strict no no, but I want you

to return everything inside this smaller wall and for things in between I do not care you

might return them.

So, why is this important subroutine? This is an important subroutine because suppose

you do this, that suppose you have a subroutine to do this then at least theoretically what

you could do as follows. You could sort of take powers of r r to be 1 plus epsilon times

the minimum distance r to be I mean start with r to be the radius of the entire data set and

decrease it in powers of 1 plus epsilon right. So, either logarithmic number of possible

values of r, build the data structure for each of them right.



Now, given a particular query search in each of this data structures right, and you can

you can say that I searching each of the data structures you can actually find out then

nearest  neighbor  to  the  query q  right.  Because  the  nearest  neighbor  will  have  some

distance will have some distance r right on that right and that right data structure, you

will  you  will  stop  right  and  then  and  then  you  will  be  able  to  answer  this  nearest

neighbor question, if you have the subroutine.
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But then how all we actually using this hash functions for this right. Because here is the

problem the problem is that that you look if you plot the distance versus the collision

probability of the hash functions, let us take the Jaccard distance right. Instead of goes

down very smoothly right it is like 1 minus 1 minus d right.

So, we do not want that. What we want picture something like this that we are given r,

we are given c r what I want is that collision probability should be very high if distance

is less than r, collision probability should be very low if the distance is bigger than c r

and in here I do not care and it can be anything. Just that I want this to be high and I want

this to be low right. So, how do I achieve that? Are this is the next big idea in LSH,

which is by helping you do this amplification in probabilities.
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So, here is the 2 here the 2 operations it will do. That first will do what is known as a

AND-ing what is AND-ing. Instead of a single hash bit see this is this is one of these one

of the original hash functions that we were constructing, instead of taking one of them tik

k of them and then build tuple out of them. Let see these are these are 0 one then build a

tuple out of them k tuple right. If these are numbers build a tuple out of them right and

now my new hash function is this tuple, new hash value of this tuple. So, now, what is

the probability that that H of x equals to H of y? Of course, it is the because you also

choose them independently this key functions independently so, then it is a product of

this probabilities.

So, then if we if are follow them and identically distributed; so, it is a probability that

one of them collides the power k; because from I mean because this probability is a

function of the distance between x and y nothing else. But see what might happen is that

while see everything because we are doing everything to the power k all the probabilities

fall down right. But then if 2 points are closed even that probabilities falling down, even

that probabilities falling down; so, now I want to raise that right.

Because, I want to say I mean we might have achieve this, we might have achieve this

part because we have pulled a all the probabilities down. But now I also want to achieve

this  part.  The  fact  that  the,  fact  that  if  the distance  is  small  right  the  probability  of

collision is very high.
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Then the next thing that we do is oring and this is actually very simple. This is says that

you have one search each, now build multiple search hash tables right one for each of the

H s. So, create some capital L number of H s each of them. So, each such each such

capital H 1 is again build out of a tuple right, but now build capital L such capital L such

L such big hash tables now right.

Now, when we search for a query right when we search for a query, you go to each of the

hash tables and then you search for each of them right? You basically then take the union

of these of these of these hash buckets right and then you search for a near neighbor in

the union right.

So, then this union is a union over the over the L tables. You looking at the candidates in

all of them putting them together and then and then trying to find out the near neighbor.

So, there 2 steps one is a is a AND-ing operation in some sense, in which you building a

composite hash function using a tuple using a tuple of smaller hash functions. And the

other is a OR-ing operation, in which you are you are sort of creating multiple tables and

you are putting them together. And you use all the tables, when you are trying to look for

query.
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So, it is the simple example for instance right because previously remember we saw 2 we

had these sets S 1 S 2 S 3 S 4, we had one random permutation h one and that had this

sketch for S 1 it had one for S 2 it had 2 S 3 and this should be S 4 really S 4 it had this,

and similarly we had h 2 which are the sketch. So, now, this would be capital H 1. So,

capital H 1 of S 1 would be equal to the tuple 1 comma 2. 

Then capital H 1 of S 2 would be the capital 2 comma one right and then we would build

a table out of this. Then next table would be capital H 2 which is build out of yet another

2 independent hash functions h 3 and h 4. So, S 1 is map to this tuple S 4 is map to this

tuple and so, on. So, that is. So, that is what will do.
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So, why is this good and this is a intuition. That suppose you are trying to write down the

probability for given q and any y you trying to write down the probability that h q equal

to h y right and we know that for the basic hash function, this probability depends as a

distance between q and y 1 minus distance between q and y right. Then the probability of

finding y as one of the candidates in this, is this expression and let us analyze this.

So, this expression is a probability that in one of that it is in one of the capital H of q

equal to capital H of y right this is the probability that one it is 1 minus d to the k. So,

then 1 minus that is a probability that capital H of q is not equal to capital H of y, that

raised to the power L is a probability than capital H of q that q and y fall in different

buckets in all the L hash tables right.

So, 1 minus that is a probability that at least in one of the capital H, one of the capital L

hash tables q and y have been placed in the same bucket ok. So, the 3 there are 3 steps

here and you have to carefully go for that. And it turns out very interestingly that if you

plot this function it looks something like the sigma it curve more or less right; which is

that you can choose the values of k k k and l depending on the depending on these radius

on the radius r and c r, such that it is high in this spot and it is low in this spot and it is

can go some smoothly here right and this and that is what will do.
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So, just to being formally write down formally that if we have a base hash family that is r

c r let say p q LSH right then for any y such that q minus y is less than r, the probability

of y as a candidate in this in this after looking at the L capital L hash tables is 1 minus 1

minus p to the k to the this raise to the power L. Because, this is the probability that it is

a candidate in one of the hash tables is not a candidate in one of the hash tables that raise

to the power L is that none of the hash tables return it as a candidates 1 minus that is the

probability of getting it as a candidate in at least one of the hash tables right and similarly

if q minus z is bigger than c r.

So, now are looking at q we are looking at 1 y that is close and o1 z that is far right.

Similarly anyone can say that the probability of that z appearing as a candidate in any

fixed hash table is less than q to the k by this definition. Therefore, the expected number

of z is L times q to the k. So, now, what do I want I want to choose the values of k and

capital L, I want to choose it so, that this probability is high and this expectation is small

right.  Because  this  expectation  is  what  is  driving  my  query  time  making  these

expectations on will reduce my query time, making this probability high will increase the

probability that I actually find the near neighbor y right.
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So, let us see if you can choose this values right. It turns out and this you should really

convince yourself by plugging in these values, where it is possible I mean the important

quantity is this is this ratio rho between the log p and the log q right. And if you set l by n

to the rho and it is the important to note that rho is less than 1. Rho is less than 1 because

p is because p is smaller than p is larger than q p is log 1 by p is less than log 1 by q. So,

1 by p is less than q we need that which means that p is larger than q also. 

So, and I need to choose L to be n to the rho and we need to choose k to be log n by log 1

by q. And you should plug in these values you can make this probability to be at least 1

by e 1 minus 1 by e and you can make this to be less than equal to n to the power rho

right.  This  might  not  seem  very  exciting  to  you  because  it  is  still  n  to  the  power

something, but see it is its bit big true right. Because now this is the query time is now n

to the rho and we can make which is which is sub linear, and it was not at all clear if we

could make it sub linear ever right.
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And so the number of and so, the space required the space required is n to the power 1

plus rho right. Because you have n to the rho hash tables each of them needs n space and

the query time is n to the rho right. So, I need I need also turns out that if you analyze the

actual  basic  hash functions  of hamming angle etcetera,  you can for  if  you want  a  c

approximate near neighbor, you can set rho to be 1 by c I mean it is an offer rho to be 1

by c right, which mean what does that mean? 

We can  get  a  2  approximate  near  neighbor,  is  c  equal  to  2  right  we  can  get  a  2

approximate near neighbor, in time that is query time that is square root of n and space

that is n to the power 1 plus half one 1.5 right. So, so by sort of not blowing up the space

too much, we were still able to substantially reduce the query time from n square root n.
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So, just to summarize, in order to design I mean this is all nice in theory, but in practice

the theoretical parameter current is our only a guidance. What you really need to search

for, I  mean in practice is you need to really search over the parameter space to find a

good operating point the values of k and l. There are some ways of guiding the search to

by looking at some data statistics and will see that in next class and. 
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So,  just  summarizing  over  all  the  LSH is  actually  a  very  powerful  tool  for  nearest

neighbor search problems, it has a it is a very active area of research as well as practice it



is use a lot in practice. I at the basic theme is to trade of space with query time right and

it is one big kind of open question is that, it is really practical for medium to large data

sets because you are blowing up space right.

So, you cannot really deal with billions of data sets. And sort of doing it in distributed

manage also kind of an open question. it is practical from medium to large data sets with

fairly large number of dimensions, but for clear how to make it work for very very sparse

very very high dimensional that it is right you should you should look at some of these

references. 
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The one of them is the is the book that we are that we have been that we have pointed to

in the syllabus, modern massive data sets by Rajaraman Leskovec and Ullman, and other

is  this  excellent  survey as  well  as  a  number  of  other  very  recent  papers  by Alexon

Andoni in the page that you maintains on LSH at MIT and the that is it for today.

Thank you.


