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Near Neighbors

Welcome to today’s lecture of Scalable Data Science. Today, we going to start a slightly

new topic. And, will start asking a question of how to answer near neighbor queries ok. I

am Anirban and I am a faculty of Computer Science and Engineering at IIT Gandhinagar.
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So, here is the broad setting. That suppose you have a set of data points and a query q,

and this  data points will  be given to you beforehand.  And, you have the answer the

question of what is the nearest data point to the query. The query is not known to you

right you can pre-process the data points before hand.

And you have to answer the question of what is the nearest data point to the query. While

this question is itself is not very well post at because, what are we asking for are we? Are

we asking for the K-nearest neighbors or are we given K or are we given some radius r

and we are asking for the set of the all the set of points that are within distance r to the

query q. And, what is the distance function right all of these need to be defined, but

before we go head and defined these, let us see what are some examples of this what are

some use cases of this particular problem right. 
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It turns out that there are numerous applications right as there is; obviously, whole lot of

applications in such, right. Suppose you are you are sort of designing a such engine in

which a in which you given image and you are asking for similar images ok. There is

also  are  large  application  in  d  duplicating  web  search  right.  And  one  of  the  major

applications that I mean in this such engines is that in the web what you would see is that

there are multiple copies of a webpage.

Right  because,  may  be  it  is  a  news  article  right,  may  be  it  is  a  news  article  from

associated press and the same news article at basically very, very similar news article

have appeared in the I mean slide modified versions of at, or even the same article with

some with some ads on top of it has appeared in multiple pages right.

And as sort of nice search engine, you would not want your front page you would not

want your search page to be loaded with multiple copies of the same article. Because

these it does not get much I have seen multiple copies of same article. So, what all this

search engines to and it also takes tuple of modes space, it also takes have a lot more sort

of resource in terms of crawling banned which resource names of crawling storage basic

terms of storing multiple copies of the same article and how will lot of confusion right.

Plus, it might also confused you the ranking because now I mean all these articles all the

different copies if you regard them different articles they are pointing to the all there out

links are appointing to the same sort of webpages. So, the page rank with modified and



so on right. So, you want to do d duplication right. And for various reasons this is not

exact d duplication. Because, two webpages the might have just straightly different html

they might have straightly different ads or css or and so, it  is not exact duplicates in

terms of the in terms of the entire webpage content right.

So,  this  near  duplication  for  web  pages  is  a  very  big  application  of  the  of  locality

sensitive hashing. And we will go over it will see something related to that. Is also very

natural question to asking clustering right. Because, what is clustering I mean after all

rather than just clubbing the same items together right. And then and then we could kind

of ask that given a particular, given a particular no, given a particular data point, what are

the  items  are  the  close  to  it  right,  that  is  what  we  are  asking  there  is  an  obvious

application in designing at nearest neighbor classified.

So, nearest neighbor classified is basically one in which given a test point right, you

would look at the neighbor surrounded. This neighbors you would look at the labels of

the neighbor surrounded and you would assign a label to the test point based on the

labels of the neighbors. So, before you assign at a label you need to answer the question

of how do I find the nearest neighbors efficiently right.

A slight variant of this problem which requires slightly different set of algorithms is the

question of all pair near neighbors, in which rather than being given a particular query

you are given a data set and you have to find out all pairs of all I mean all pairs of data

points that are considered near neighbors.
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So, again what is the naive solution to this algorithm, right? Before we start looking at

smarter solutions; so, the naive solution the most naive solution is of course, a naive scan

right. That given the, that given a query at query time you do you sort of go for all the

data points right. And if you assume that the data points are in are in Rd right, we have in

explicitly mention that, but this is the, but this is the dimen this is the size of if you

assume them to be vectors in Rd, then you need time order n which is the number of

points times order d to compare each point with the query right.

So, that needs total time order n d. So, answer the nearest neighbor question. This is

exact of course, this find it too much right, I mean n could potentially the, if you order

sort of self-respecting data scientist you are you are dealing with n to be millions right.

And d this also potentially large and that at test time you certainly do not have enough

time to sort of do this exhaustive search; so, what can we do? The other extreme alternate

I mean alternative is to compute the voronoi partition of the of the point set. So, what is

the voronoi partition? So, the given a particular  set of points voronoi partition is the

following is the following is a following partitioning of the space.

So, imagine that we are in r 2 right. And now we have marked of the region that of all of

all points, that a closest to this particular blue point right. That is the voronoi cell for the

blue point right. And similarly we do this for every for every other point. I mean I can do

this for this for this let us call this a pink point right.



Then I mark of this cell right and so on right. So, of course, the voronoi partition depends

on the on the other points that are there in the data right, but once if you variable to do

this, once a query point comes you just need to check which voronoi partition at falls n

and that would give you the exact answer; however, life is not as smooth.

Right so, the voronoi partition into in 2 dimensions is fine, but the voronoi partition in d

dimension needs a lot of storage. In fact, it can need storage of the order of n to the

power d by 2 right; which is not nice right I mean because the I mean while we do not

want to spend time order n d, we can no also not spend time and time or space that is n to

the power d that is even was.

And because once you store the voronoi partition you I mean given a query point you

also have to calculate it I mean yeah I mean that is really the number of phases of the

voronoi partition. So, given a query point you have to compare it with each of these

phases and so on that is that is right too much. So, I do not want to do this ok.
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So, one set of techniques that will look at it this lecture are calls space partitioning trees.

So, what is a space partitioning tree? The intuitive idea is very simple actually, is says

that let us recursively partition given the points right suppose given the points let  us

recursively partition the space right.



So, let us say that we first partition it according to I mean according to the x and the y

axis right. And then we and then we and then we and then we again partition it according

to here, then we again partitioning according to here then we again partition it here then

we again partitioning it here right. So, I am a calling with a tree, I am calling into tree

because you can imagine that the top level partition had 4 children right corresponding to

the 4 axis. Then each of these partitions again has 4 children corresponding to the 4 axis

that it creates and so on right; so, this right.

And then and then given a query given a query point, you just for every note you just ask

which of these children do I need to go down into right. So, this is a broad framework

right. The partitioning method that I showed you is really the most naive one right. This

broad framework can be made concrete in a bunch of different ways and we will see a

couple of different ways right.

And this is also bunch of ways to search for a given query right. The most critical thing

the most critical step in this in this frame work is to decide how to do the partition. And

we will see a few ways of how to do this partition.

(Refer Slide Time: 09:58)

So, one of the very, very common ways that is that is very sort of much used even today

is known as k d trees right. So, this was initially proposed by Bentley in around 1970.

And  when  it  was  initially  developed  I  mean  the  number  k  is  denote  the  number

dimensions. So, it used to be called 2D trees, 3D trees and so on.



But now it has just coming to the name. So, what is the intuition here? The intuition here

is at each level of the tree uses a single dimension to partition ok. How does it choose the

dimension what is the value in the dimension all that will come right? So, so let us see

an. So, let us see the algorithm right.
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So,  we  start  with  the  entire  set  of  points  with  each  level  you  associate  a  cutting

dimension. Let us say you have like 3 dimensions. So, what we will try to do is cycle

through this dimensions. Essentially let us say we start of the first dimension and say we

from the first cut according to some threshold in the first dimension. Then the second

level at the second level we use the second dimension right. And then we and then we

choose some threshold in the some hyper plane was some plane in the second dimension

to cut the second to make the second level children and so on right.

Now, how do I choose it threshold? What we would do is as follows at every step right;

we would try to balance of the tree right.  We would try to  keep the number of left

children equal to the more or less equal to the number of right children. And the way to

do that would be to say that you have considered and dimension right, you have a set of

points  that  you  want  to  partition  along  this  dimension.  Now, look  at  the  value  the

coordinates values of the points along this dimension.

So, we have this dimension that you have chosen. You have the points that you want to

partition right. And look at the coordinate values of these points along this dimension



take the median coordinate value, and use that as the threshold in this dimension. So,

basically then you put points to the left all the points to the left of the median in one of a

in one child all the points to the right are median in one child. So, this would be k d tree

with 2 children per note. 

And this would and we would create an axis aligned partition that uses the median value

in every in each of the dimensions ok. So, let us do a small example maybe um. That is

your small example. That suppose we have let us. So, small example in r 2 itself, right.
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So, maybe first we choose the dimension we choose the partition along this dimension.

So, this is my first cut next maybe. So, my first tree is this and then we go in left and

right. S1 S 2 then, we partition we have this set of points S1 right now you need to

partition S1 right. Then we choose the median here, let us say that the median here is this

right. So, this would be the cell S1 1 this would be the cell S1 2 right 

Now, here the median partition might be this. So, right may be S1 1 and S1 2 we do not

want to partition anymore. Because they have only one point, but may be here you want

a partition. Suppose we had some few more points here. Maybe here you want a partition

according to this here may be you want a partition according to this. So, this is S 2 2 1 S

2 2 2 S 2 1 1 S 2 1 2 some just numbering is arbitrarily according to some notation that I

have the numbers do not really mean much in the labels of the partitions.



So, at these points; so now, we have the partitions and in the leaves you store the data

points right.  And you could there is also data point associated with every node right

because, you are using the medians. So, you could say that the inner node S1 stores the

data point stores the data point this one. This, right the inner node S 2 stores this data

point right. And so on right the first root note stores the data point this stores this root

data point.

So now given a particular query, what would be what would we do? That is the question

right. So, suppose a given a query here what would we do right. Or maybe if you or may

be the query lies here what should we do right. And there are different things that you

can do here right and let us go over this some of this.
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So, the space taken as clearly order n, for the data structure because you sort of you do

not replicate anything you just divide the entire set of points if you can dividing and that

is it. So, there are typically 3 strategies for nearest neighbours search in k d trees. So, the

first strategy is known as a defeatist search. What you do there is that you only search the

child that contains a query point right. What does it mean?

What  that  means  is  that,  suppose  you  have  divided  the,  suppose  you  have  divided

according to here right and then suppose your query point falls your query point is here

falls here right. So, then from the route you would only go to the left, and from this child

you would again go the right. So, route you go to the left and then you go to the right.



You search you search only in this, but as you can imagine that this might not be entirely

correct.  Because  it  is  possible  for  instance  that  the  nearest  neighbour  to  this  to  this

particular point lies somewhere here right. Maybe there is nothing I mean maybe there is

one point in the cell, but maybe that point is very far of here right.

So, just because a query point falls in this cell, does not mean that the nearest neighbour

will be in this cell right. Because the because the nearest because a cells because a query

point might be close to some boundary of the cell, governing nearest neighbour I mean

ideal place to that nearest neighbour would be somewhere else, but the, but what the

defeatist search does is that is just is just I mean is does not considered that. Is just keeps

on going and then and then if it does not find anybody you would finds anybody in the

cell it returns that which might be wrong or it just gives up if you does not find anybody

this cell. 

So, that is it; so, then the descending search right. What it for do is that it would say that

let  me  see,  let  me  go  down this  cell  right  and  let  me  maintain  the  current  nearest

neighbour and the distance to it. So, for instance it would say that I have gonna down this

cell and then my candidate nearest neighbour is this. So, it maintains the distance to it.

Then it looks at the path that is has followed right. Functions it when it when left here it

when right here and then it says that if this is the radius, if I consider a ball of this radius

right does it intersect which are the cells does it intersect right. Then it sees that intersect

this other cell and therefore, I must go up my recursion tree and explore this other cell

also ok. So, it does that.

So, basically and then it is gets this potential nearest neighbour as a candidate. And then

it is says that let me consider now this new ball. So, which are the cells does it intersect

this is a bad drawing, but you get the idea right. So, it keeps on exploring the it sort of

sees it has a candidate nearest neighbour near neighbour. It and the candidate distance to

it sees how many it construct the ball around the query point and sees which of the cells

does it  intersect.  And then it  goes and explores those selves  also by winding up the

recursion. And therefore, once it explores it the candidate near neighbour gets a little

closer because a my change the candidate. And so, the candidate distance also that it is

closer.



So, this is this is definitely going to give you the nearest neighbour right, but it might end

of searching entire tree. A slightly better slightly better combination of these 2 is what is

known as a priority search. In which case it does what it does is that as it is going down

the tree.
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May be as it is going down the tree, the query point maintains a priority over the over the

over the regions depending on the distance. For instance is says that this I have I have

gone down this tree to here, here, here, here, here, but now if I look at all the particular

partitions  that  all  the  cells  that  have  seen,  my distance  to  the  cell  is  this  much my

distance to  this  particular  cell  is  this  much and distance to  the cell  is  this  much my

distance to this cell is this much right. On this it is this it is this right.

And so,  it  gives the priority queue over all  this  over all  this  cells  right.  And then it

decides to visit the cells based on the priority queue right. So, depending on how you

implement the priority queue and where you terminate the search this can also return you

I mean guarantee you that the that the nearest neighbour will be returned.

However, again in the worst case you can potentially end up searching all the nodes. And

that is the basic problem with the k d trees right. And it does not do a very good job of

answering the nearest neighbour queries in the in the case of in the in the worst case

right.
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So, there are several variants of space partitioning trees possible as I mentioned right.

And here are a few of the more important once. There is something called a random

projection tree right. What does it do? Remember that we are creating a partition at every

step right what it does is that when you search of the data right, let us say let us say that

this is the let us say that this is the data right this is the data it in sort of takes the random

hyperplane and tries to partition the and partitions the data as like either on the left of it

or  on  the  right  of  it.  And  then,  it  taking  once  it  does  the  partition  and  this  will

approximately divide the data into half and again once, it does it this I mean this takes

another random hyperplane this takes another random hyperplane and tries to partition

the data.

And then this take another random hyperplane they this takes another random hyperplane

here another one here another one here and tries to partition the data right. And that is

how it is keeps on growing the left on the right the right sub tree of any of any node. Ok

this is known as the RP tree or a random projection tree. I mean again the variant of this

is that you could use any other direction right, and you could use something like the

principle  eigenvector  of  the  covariance  matrix  right.  What  is  intuitions  here?  The

intuition is the here is that the direction of the principle eigenvector of the covariant

matrix is the one along which you can partition the data the most. It is the one with

direction of the maximum variance.



So, therefore, if you half a hyperplane that is orthogonal to the that direction that cuts the

data, that is separates the data the most in some in some surface to volume kind of ratio

right. That I mean we can make this a little more precise, but in a surface to volume

sense  you  are  you  can  if  you  take  the  direction  that  is  orthogonal  to  the  take  the

hyperplane that is orthogonal to the to the principle eigenvector, you get you get a good

direction to separate the data right. And you can keep on doing that.

So,  you  at  every  node;  so,  first  you  take  the  entire  data  set  calculate  the  principle

eigenvector and partition according to that. Then you have the left sub tree have the right

sub tree.  Again you calculate  the covariance matrix of these two, you again take the

principle eigenvectors and then and then and then separate and keep on doing this. So,

this is a little expensive right. It is it performs not I mean the performance is not bad.

It is a little it is not trivial to analyse and it is also little expensive because at every time

point you calculating the principle eigenvector. Then there is 2 mean tree right which

says that let us calculate the let us not exactly calculate the principle eigenvector. Let us

try to do 2 clustering of the data right. Which is effectively other principal eigenvector

trying to do. Let us try to put some to the left I mean let us try to run came in with k

equal 2 for instance and we take the centres, we take the 2 centres and we take the line

separating the 2 centres.

So, is the 2 centre is the clusters will look like this, we take the 2 centres we take the

orthogonal direction of the orthogonal hyperplane to the line connecting at 2 centres and

we use that the separate the data right. So, the data has nice cluster structure this will this

will of course, what nicely. So, the problem is that it is very hard to quantify the worst

case performance of any one of them of any of these.
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However, there are possible ways to try to analyse these right. And these and these and

these particular techniques they all can be analysed in terms of this common thing right.

You could try to ask there are if  I use a space partitioning tree does the partitioning

algorithm adapt to the intrinsic dimensionality of the data.

So, what do I mean by intrinsic dimensionality? For instance, so, imagine that you have

you have  you have  piece  of  paper  in  that  you are  holding up in  3 dimensions.  So,

although and you take points on this piece of paper right. So, although the dimensionality

this points have a 3 dimensional these are points in 3 dimensions. They really lie on this

on this 2 dimensional plane right. Similarly, what might happened is that although the

data is been represented in high dimension. The effective dimension somehow it more or

less lies in a low dimensional plane sub space.

So, what we would really like is that if the data lies in some low dimension really, in that

I mean the partitioning algorithm should really depend on this intrinsic dimensionality of

the data right. It is not I mean an here is one way to 2 kind of formalize this right. What

we might want to says is that if the intrinsic dimension is d. So, note that haven’t really

defined to you what intrinsic the dimensionality is, but if the intrinsic dimensionality is d

then after  ordered d levels,  and why ordered d because your cycling through all  the

dimensions that after we are cycles.



So, all the dimensions we substantially shrink the size of each cell right. That the size of

itself becomes something like half of what it was at this step. So, is that happens then I

can says that the depth of the tree something like d log the maximum diameter of the of

the data set right, d times the log of the diameter of the original data set right which

means that the it is of it is re-establishing small.

So,  in order to formalize this,  you need to know what is  the I mean how to sort  of

formalize intrinsic dimension. There are couple of phase to do this the something (Refer

Time: 26:53) dimension. So, here is one sort of easy to say to way to do this right. We

see that the intrinsic dimensionality sometimes we say that the intrinsic dimensionality of

a data set is d right. If you look at the d largest eigenvalues of the covariance matrix and

they account for 1 minus epsilon fraction of the trace.

So, remember that the trace is a some of the eigenvalues right. So, if the if taking if the

original dimension is capital D, but only small d of the; so, think of small d as let us say

let us say 10 percent of capital D. Evenly small d of the largest eigenvalues account for

more or less the entire trace let us say 99 percent of the trace then will say that intrinsic

dimensionality  is  small  d.  And  it  is  known.  So,  why  is  this  definition  important?

Because, it is known that at least for some of the at, least for some of the algorithms

right.
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 for instance the RP the random projection and the principle direction trees adapt to this

definition of the dimension. That is, they have this particular property. They have they

have this particular property. When you define the intrinsic dimension in terms of the

covariance  matrix,  but  something  like  the  k  d  trees  does  not  adapt  to  the  intrinsic

dimension because it is always using the median.

So, it is not really using the structure any deeper structure of the of the data right. So, in

general  the  rule  of  thumb is  that  if  you are  really  interested  in  working with  space

partitioning trees it might be useful to look at RP trees and principle  direction trees.

Unless of course, you have you have library implementation k d trees and you do not

want implement anything on your own ok.
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But, but these are, but the, but the RP trees and the RP trees and the PD trees are almost

always better performing than the ordinary k-D tree.
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So, just to summary just to summarize who introduce a nearest neighbour question in this

lecture. We also looked at family of algorithm space on space partitioning trees, and the

and the rule of thumb is that if you are trying to choose one out of this family, if you try

to choose one that adapts to the intrinsic dimensionality of the data right. And 2 of the

ones that we saw and 2 of the ones that I mentioned are random projection trees and

principal direction and principle direction trees.
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So, if you want to look into more into some of these, there is this a book by Professor

Samet  on  foundations  of  multidimensional  and  metric  data  structures.  There  is  also

bunch of very nice papers by Professor Sanjay Dasgupta. And in particular this particular

paper talks about the notion of intrinsic dimension and how it applies to the different

phase partitioning trees. So, feel free to look at that, and that is it for this lecture.

Thank you.


