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Frequent Elements: Count Sketch

Welcome to today’s lecture of Scalable Data Science. Today will talk about Frequent

Elements again and will see at different data structure today one called Count Sketch. I

am Anirban and I teach Computer Science and Engineering at IIT Gandhinagar.

(Refer Slide Time: 00:33)

So, we do not need much revisiting of distributing model, but again we are dealing with

both arrival only, and arrival departure streams, and we are looking at the questions of

frequency estimation in one pass.



(Refer Slide Time: 00:48)

We are seen 2 algorithms until now; I mean 3 algorithms until now actually., We are seen

to deterministic counter based algorithms, the Misra Gries, and the SpaceSaving right.

That work only in the only in the arrival only setting we have seen the count-min sketch

and that is have that is a proper sketch that works in the in the arrival only setting. And

the slide variant of that let me call the count median sketch right where we say that we

could take the median when we written in estimate, and this works in the arrival plus

deletion.

Although we did not quite see a proof of this it is ready similar to that of the count-min

sketch.
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So, I mean before we go on to our new algorithm let us recall with the count-min sketch

was, right. So, here we are using here we are using 2 parameters: one name w and the

other name d right; w are the different w hash functions and d is the range of each of

these hash functions. And then what the count-min sketch should do is that it given a

particular update it would look at each the where each of the hash functions places; that

particular  places  that  element  x  go  to  the  corresponding  cell  and  update  the

corresponding cell that is all.

(Refer Slide Time: 02:30)

So, the count sketch is actually something that is very similar right.



(Refer Slide Time: 02:40)

So, we have the same kind of data structure we have a small summary w by d right.

There are w hash functions right h 1 to h w each of them map to the range each of them

map to the range 1 to d, those also something additional right there are w sign hash

functions right g 1 to g w.

Now, each of g 1 to g w gives you a random sign for each element of the universe. So,

think of it as flipping a coin for each element of the universe if the coin comes out heads

you give it your sign it as sign plus 1. If the coin comes out tails as a inter sign minus 1

and of  course,  the hash function h 1 h i  implicitly  sort  of  assign I  mean given any

particular element with a sign set to one of the positions uniformly at random right with

probability 1 over d.

And again what we what will point out today we should did not I guess to last time is a

fact that, while we do the analysis for in random completely random hash functions we

could as well have used k wise independent hash functions, for actually k to be equal to

log 1 over delta that is all.

In fact in fact here will need a smaller value of k, so let me erase this here we actually

need k to be 4 wise independent that will actually be enough. So, let see this is actually

the count sketch. So we do the initialization as expected right.



We initialize, we choose we choose h 1 to h w we also choose g 1 to g w and then we

initialize the array a to be all 0. For any item and it is update x and I the update c which

is one element of the stream, so here is what we do now right.

You look at for each of the hash functions you look at where that hash function is spacing

that item you go to that cell. Now instead of updating it by c, you multiply c by the sign

g i of x right. So, this becomes either plus c or it becomes minus c right and you do the

update of that bucket with this sign right.

So, remember that each element gets only one sign right, the next time element comes

again give the same sign because this is the hash function. This is not a any random

variable that we are sort of conjuring up every time a new copy of the item comes. So,

this is a hash function that gives assign the sign to the item and the always do a plus c or

we always do a minus c if the if the update is c for that particular item. So, now what do

we do when we are trying answer the query right. So, we look at now again we have w

estimates right 1 to w i equal 1 to w.

So, an each of these estimates is now g i of x multiplied with a h i A i comma h i of x. So,

why are  you multiplying  pre  multiplying  with  g  i  of  x  that  is  really  obvious  right,

because if g i of x was minus 1 you want to get away from the get rid of the minus, so

you again multiply it with g i of x so that is fine right. But now, we are taking the median

of these, estimate instead of taking that average right and will see that that is useful.
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So, as is our tradition let us run then a small example. So, we have this stream and we

have encoded the hash table the hash functions in this format. So, what it means is that h

1 maps blue to the position 2 and g 1 maps blue to the sign plus, h 1 maps yellow to

position 3 and g 1 maps yellow to sign minus and so on right. So, the tuple denotes the

first element of the tuple is the position to which h 1 is mapping the particular element.

The next sign the next element of the tuple is a sign that says that what is the sign that g

that the corresponding g function is assigning to this element.

So, let us number the positions 1 2 3, so first blue comes. So, first red comes red goes to

1 with plus and red goes to 3 with minus, blue comes blue goes to 2 with plus and blue

goes to 1 with plus. Then 2 reds come 2 reds go to 1 with plus and here with minus,

turquoise comes turquoise go to 2 with minus turquoise goes to 3 with a plus. Blue goes

to 2 with a plus 1 with a plus, 2 reds come again go to 1 with plus and 3 with minus, 1

blue comes goes to 2 with plus goes to 1 with plus. Turquoise goes to 2 with minus goes

to 3 with plus yellow goes to 3 with minus goes to 2 with plus, blue goes to 2 with plus

goes to 1 with sorry blue goes to 2 with 2 with plus, blue goes to 1 with plus.

So, therefore in the in the cell 1 right here the total count is 5 here the total count is here

the total count is 1 2 3 4 minus 2 2, here the total count is 1 2 3 5 minus 2 3; here the

total count is minus 1 here the total count is plus 1 here the total count is 3 minus 3 3

minus 1 2. So, that is why the data structures is going to look like and the and how you

answer the query is really obvious that suppose you are queried with w then in that case

you go to you go to position 3 you multiplied with minus.

So, that becomes minus 1 times minus 1 times 1 and then you go to position and then

you go to position 2 of the of the hash bucket so that is 1 and then you multiply that with

the with the plus, because g is plus s so plus 1. So, median of 1 and 1 and so we get a 1

here. So, at least w, I mean for yellow it is answered correctly which is of course, on the

case for all the other elements.
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So, again the same kind of guarantees for the space as well as the update time right,

because each item is mapped to one bucket per rows it is not a surprise that; that you get

the same kind of guarantees the.

(Refer Slide Time: 10:16)

So, the question is that what is what is d and what is w right and again following the

principle that we had that in order to set the values of d and w first you have to do error

analysis right. And based on a based on the on the error analysis you want to say that

what is the dependence of w and d and the 2 typical error parameters the approximation

factor epsilon right, as well as the error probability delta.



So, let us start by setting d equal to 2 by epsilon square and w equal to log 1 over delta

right. So, then the w is let us denote y 1 by to y w as a w estimates. So, the i-th estimate

is this particular quantity right, it is equal to you look at the i-th hash function, I am not

gives you the cell A i h i of x. So, you multiply this cell by the by the sign hash g i of x

that gives you the i-th estimate Y i and what are we doing at the end? We returning the

median of the i-th estimates. So, let us at least calculate the expectation of each of thees

estimates.

So,  the expectation  Y i  is  nothing is  in  exactly  this  expectation  because,  that  is  the

formula and now I can expand out the A i h i of x in terms of the sum, what is this sum?

Is nothing but you look at all the y that have appeared in the stream right and that and

those y’s that the hash function puts in this bucket right.

That the i-th hash function puts in this bucket look at exactly those ys. You look at this

sign g i of y and then you get a weighted sum with the frequencies right, the summation

of f y g i of y where y is exactly that set of ys such that h i of y is equal to this bucket this

bucket i d. So, that is the so that is expectation of Y i, so it might look a little complicated

now but it is going to simplify itself very soon.
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So, let separate out 2 doubts first of all we know that this sum has the element the sum

has the sum has the element x.
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This sum has the element x so let us take out the element x right and if you take out the

element x. You will get a term of the sum that looks as follows g i of x square f x plus

and now the sum is over x not equal to y and so on.

So, by linearity of expectation let us calculate the expectation of this let us calculate the

expectation of the second part let us take this one first. So, what is g i of x? So see f x is a

constant there is nothing to worry about that and what is g i of x square? G i of x is only

plus 1 and minus 1. So, therefore g i of x square is always 1 right,  so therefore the

expectation of this part is exactly f x right which is what you have written here so that is

nice.

Now, what is the expectation of the second part, of the second part which is the sum over

all x not equal to y which is the sum over all x not equal to y right. This quantity sum

over x not equal to where as you take the sum over all x not equal to y right, so might’s

in complicated but again.  So just  look at  this very simple observation,  that now that

because x not equal to y you have g i of x and you have g i of y right. So, the g is an

independent  of the h’s,  the value the g hash functions are independent  of the h hash

functions. So, therefore right whatever else you have you will have this expression right

for each term you will have a expectation of g i of x times g i of y right. But now again g

i of x is independent of g i of y and each of them have 0 expectation right.



So, the so the expectation of this is 0 the expectation of this is 0. In fact, the expectation

any one of them is 0 and that is enough right, which means that this entire sum has

expectation 0 for every y not equal to x right. And so the entire sum has expectation 0

each because,  each term has expectation 0 for each y not equal  to x. So,  this  seems

somehow it all sort of boiled down to giving me the right expectation right, which was

the entire of this of these of these sign hash functions.

But now what we need to do in a is we need to analyze the variance in order to bound the

error and this is where the independence of the hash functions will come in. Well, they

have also come in they we have also kind of use the independence in the in sort of saying

that expectation of g i of x is g i of y, but that is the independence of the different hash

functions right.

Now what we are going to says that the fact that whether h; I mean. So, you need to

know that the 2 kinds of independence here whether h 1 and h 2 are independent and

whether h itself is chosen uniformly at random, I mean completely random hash function

right. Now in the in analysis of variance right you need to I mean here will assume that h

i is we chosen at random right and there and I am will see that we can relax that to make

it only something like 2 wise independent or 2 wise universal.

So, I will not do the entire variance calculation because a lot of it is algebra, but what

you can say is that the variance of Y i is going to looked has something like this, you

going to have summation y f y square summation of or a minus f x square and right. And

we would not would not use this exact form what you can use is a simplifying form, that

tells me I mean that goes as follows, that you sort of upper bound this quantity by the 2

norm of the frequency vector f.

So, this is the 2 norm of the frequency vector f and you can upper bound this quantity

and you can upper bound the numerator by this quantity and the denominator you get a 1

by d right. You get a 1 by d because I mean in the denominator you get a d, because that

is the range of the hash function right.

So, implicitly the probability of any collision is 1 by d and once you do I mean this

analysis of the variance is really simple I know you just need to boiled down. I mean just

need to write down expectation of the expectation of Y i square right and distribute that

distribute the square over the sum and so on and will get this hence very simple.



But once you have this bound on the variance now we can apply Chebyshev’s inequality.

Because, we know the expectation of the random variable is exactly f x which is what we

want, we know the you know a bound on the variance and let us apply Chebyshev’s

inequality which is what will say that the property that Y i minus f x. Absolute value of

that is bigger than epsilon times the 2 norm of the random of the of epsilon times the 2

norm of the of the frequency vector is less than equal to the variance divided by epsilon

square 2 norm square right and we have bound the variance as f 2 norm square by d. So,

therefore you get a f 2 norm square by d divided by epsilon square f 2 norm square. So,

therefore the f 2 norm squares cancels out and then you get a 1 by d epsilon square in the

in the in the probability bound.

So, now we can set I mean remember our choice of d right. So, in reality you would

choose d only after seeing this expression. When you see this expression and then you

say that it makes I want to make this probability less than one third. So, let me go ahead

and choose d equal to 3 by epsilon square, that may that says that each Y i lies within f x

plus minus epsilon times the 2 norm of the of the frequency vector with probability one

third right.

But what are we doing? We taking the median of these of these of these Y ’s right and

now what you can use is the is the same median trick that is say median trick that we are

being  doing  before,  and  that  will  tell  you  that  the.  And  that  will  tell  you  that  the

probability that that the probability that that the median lies within the probability of the

median, does not lie within this f x plus minus epsilon.
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I mean so f x this is epsilon times f 2 norm, this is the probability that the median does

not  lie  does  not  lie  in  this  interval  is  less  than  delta  right.  Which  means  that  the

probability 1 minus delta right for any query for any fixed query x we get an estimate

with this probability, we get an estimate that lies within f x minus epsilon times the 2

norm of f and f x plus epsilon times the 2 norm of f.

So, couple of deleted things I would like to point out is that, this probability holds for a

fixed query and this is always the case when we are dealing with these when we are

making this statement right. If you have to answer for all queries you have to take a

union bound right, which is not for they we doing here we are answering for a fixed

query x right.

If you have to answer 10 queries you have to take a union bound over 10 queries and

what is the space that we need? See the size of a data structure is 1 over epsilon square

log 1 over delta and each in each of the position. So, storing a counter it is 1 over epsilon

square log 1 over delta times log n, so that is the data structure that we have.
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So, by now we have seen at least at least 4 I mean 4 of this algorithms, in fact we have

seen a variant of count means I would not talk about that we have I mean.

But we have seen 4 algorithms that that each sort of answer the that each answer the all

the question of frequency estimation right and these 4 algorithms are slightly different

for each other and therefore, it is its very useful to 2 kind of get a over view comparison

of  them.  So,  this  epsilon  table  is  from the  lecture  notes  of  Amit  Chakrabarti,  the  4

algorithms that we have seen a Misra Gries space saving count-min and count sketch

right.

So, the first column contains the bound f hat x minus f x that we have proven right. So,

the 2 notations that we have used here is that when we say, when we say f the one norm

of f that is nothing, but summation f x right which is basically equal to m the length of

the stream right. When we say the 2 norm of f that is equal to the summation f x square

for all x right, that is what we just saw the square root of that. So, f 2 norm and see now

you start noticing the trade of that we are having. Both Misra Gries and space saving

both of them use only 1 by epsilon counters. Let us say I mean actually 2 by epsilon

counters both of them are deterministic.

So the excellent, but the only work for insert only streams not for inserts and deletes

count-min has sort of has. This thing has a bound that is that is similar to that of space

saving  right.  However,  it  uses  a  little  more  a  little  more  space  right  it  has  it  is



randomized. So, it has some error probability these 2 as 0 error probability 0 because

they deterministic right.

However, count-min can also be used to answer some, some more general queries we did

not really talk about that and it also works for inserts only. However if I, with to change

the count-min to count median right, we will get a similar bound here we would get how

it would have been minus epsilon times one norm of f and epsilon times one norm of f

and it would work it would work both for inserts and deletes. Count sketch gives you a

error bound in terms of the 2 norm of the frequency vector right. Remember that the 2

norm of the frequency vector is actually little bit smaller than the one norm is potentially

smaller than the one norm of the frequency vector and but it takes a little more space

also.

So, now the space bound is 1 by epsilon square depends on 1 by epsilon square rather

than 1 by epsilon for the other algorithms it works it works nicely for both inserts and

deletes. So, this is an interesting trade off and it sort of really depends on the on your use

case as to which of these algorithms really performs the better test.
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So, just to summaries in this in this lecture and in the previous one we talked about

count-min,  and count sketch to answer point queries about frequencies,  they really  2

define use a different parameters both of them are dependent on these epsilon the error

parameter and delta the probability bound right.



Both of these are linear sketches right and this is very effective because they are now

they can  be  combined  across  distributed  streams.  Remember  the  setting  that  we are

talking  about  that  suppose  we have 2 data  streams 1 and machine  1.  And the  other

machine 2 and you do not somehow you want to combine the statistics across these 2

streams right. Because, you have these sketches to be linear you can easily combine this

statistics and that is not so true, if you have this counter base sketches.

This is the extension this is one of the advantages that count-min gives you over the over

let us say space saving and or Misra Gries. Count sketch can handle departures naturally,

but for count-min we need to consider median instead of instead minimum.

There are other extensions to handle range queries and others and actual performance of

any of their algorithms is much better than the theoretical bound. They have been some

efforts to analyze these in terms of saying that if you have power law distribution if the

distribution is very skewed.

It is known that and it can be proven that a lot of this algorithms perform a lot better, the

hardest instance of this algorithm is when the frequency distribution is more or less flat is

it is more or less flat,  but there is only a small number of when the heavy it as only

slightly bigger than the than the average right. If the heavy it as is really begin much

bigger than the average then all of them perform really nicely ok.
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So, again just the same sort of references for our for this lecture and which are the lecture

slides by Graham as well as the lecture notes by Amit and Graham so that is it.

Thank you.


