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Hello everybody. Welcome to the Scalable Data Science course. Today is lecture is also a

Frequent Elements and will do 2 algorithms today; one on space saving and the other on

count  min  sketch.  My  name  is  Anirban,  and  I  am  faculty  at  computer  science  in

engineering in IIT Gandhinagar. So, before we start just a brief review of the streaming

model that we have seen that we are dealing with the only the arrival only streams. And

the elements of the stream could be element ids. We have only really dealt with I mean

examples at I have shown your really about element ids.

(Refer Slide Time: 00:53)

But  it  could  also  totally  work with  the;  I  mean when you have  the  id  and positive

frequency updates. Because he could always imagine the positive frequency update as

multiple copies of an item, let us coming in a stream, ok. Today will sort of talk a little

bit on, but arrival only streams, but then also talk about I mean some data structures at

work with arrival plus departure models, ok.



(Refer Slide Time: 01:21)

And in last class with it this deterministic we tackle the question of frequency estimation

on pass, right. That given a particular stream that is of length m, we want, I mean I

should use this words sketch a little carefully. Because today we are going to distinguish

between what we call as sketch, and what is an little more precisely may be right.

So, we want a data structure, let see and very loosely we are calling it a sketch that can

answer frequency queries at the end. Which means that if the frequency of a particular

item is f x, I want to written some estimate of it, ok. And this is a kind of guarantee that

we got, that if f x is original frequency of an item x. And you have user defined error

parameter  epsilon,  right  which  presumably  something  likes  fairly  small  let  us  say 1

percent as an example. And then you can written an estimate f hat of f x for in a item x

such that f fat of x lies in this interval. And the amount of space that you need is not even

order it is actually exactly 1 over epsilon times log n. I mean rather 2 over epsilon times

log n.

So, let us talk about very similar algorithm to what we have, ok.



(Refer Slide Time: 02:52)

So, you may, I mean if you remember what are Misra Gries algorithm was it look very

much like this, that we keep k counters, and items in hand you initialize by setting all

counters to 0. And then when we try to process an item, right we say that the first 2 steps

of the same, if x is same as any item in hand of course in incremented counter. If you do

not know enough items in hand yet, if the number of items in hand is less than k of

course, it is store x with counter 1.

But what we do if you have already have k items in hand, and next does not match any of

them. So, what remember what the Misra Gries doing, but Misra Gries were do is that it

could drop x this copy of x, right it would drop this item. And then it would decrease the

counts of the existing items that you have, right. And this let to this charging argument

that  we  have  we  had  for  giving  the  guarantee.  The  space  saving  algorithm  right

developed by (Refer Time: 03:56) others. They are something slightly different. What it

does is that it does not through it does not really through away x, on the contrary, right it

looks at the item that you have an hand, that has the smallest value of the counter, ok. It

throws away that item replaces that item id with x and it increments a counter id, since it

is strange and will through come soon example right, but remember what is doing.

So, it is not throwing away I mean it is not decreasing any I mean any counter all, right.

It replaces the smallest counter id, with the id of x and it increments the counter, well

incrementing the counter is initiative because your accounting for the arrival of x right,



but it does a mysterious, why are we assigning some other items count to that of x. And

what happens when you query?

Well, that is fairly simple, if the if the q is in hand right if q is if your if the algorithm is

tracking q of the end, then you return it is counter else return 0, ok. So, why is this a

useful algorithm? So, first of all, it should also be fairly easy to see that the space that

you have is again that the space that you need is again too long 2 k log n, right which is

fairly I mean depending on the value of k this could be fairly nice.

So, that is so, there is no doubt about that, ok.

(Refer Slide Time: 05:33)

Let us draw a small example. Suppose we dealing with k equal 2, ok. So, first we track

red count 1, blue count 1 then we get 2 copies of red. So, this is easy this becomes 3,

then make it turquoise, ok. So now, what happens? Now we drop the blue we adding the

turquoise, then we increment the count of this, this becomes 2. Now you get a blue, right

and now again because turquoise is the one with the minimum count, you delete the id of

turquoise you make it blue, and then increment these to 3. Then we get 2 reds these

becomes  5.  Then  we  get  a  blue,  right.  Well,  I  am already  tracking  blue  so,  this  is

becomes a 4, then we get a turquoise. So, this is still a smallest element smallest counter

so, this becomes turquoise and this is becomes 5, these becomes yellow, ok.



So now there is a tie, he could do either it is just do this one. This becomes yellow and

this becomes 6. This becomes blue, this becomes blue, this becomes 6. So, that simply

weird, because of at the end of the stream we can a predicting the blue has 6, and that

yellow has 6, while yellow does not really have 6. But this will be in some error, I mean

we will see able to prove some kind of error bound for this, ok.

But what is the count of blue 1, 2, 3, 4. So, blue is not so far of, but yellow is really far

of,  right.  And for  red  we should  have  our  estimate  is  0.  So,  does  look  like  is  this

algorithm many good, right. It certainly more complicated looks for complicated then the

Misra Gries algorithm. So, let us right analyze it.

(Refer Slide Time: 07:33)

It turns out that you can get similar guarantees for this algorithm, right. And let us break

down the claim that we have in to 2 claims in the 2, although claim I mean claim 2 also

will imply claim 1, but, but let us break it down, ok. Suppose we say in the first claim

and  the  one  that  will  actually  prove  in  this  particular  lecture,  says  that  if  an  item

supposing we set, oh supposing we set k equal to 1 by epsilon; which means that we are

storing 1 by epsilon count I mean item ids as well as well as their counters.

If the true count of an item, right which means that if x is such that f x is strictly bigger

than epsilon m right, then we can guarantee then we can guarantee that these item such

an x is present in hand, right. This is what will guarantee ok; that means that will track all



these heavy heaters. Furthermore what will track what will say is that at consider the

estimate f hat of x.

So, remember what the estimate f hat of x says because if an item is interact at the end

the estimate is f the counter value, if you not tracking the item the estimate f hat of x is 0,

right. So, the estimate a hat of x will satisfy, f hat of x now is at least f of x. And f hat of

x is at most f x plus epsilon m. So now, instead of now we have a lower bound by f x and

then upper bound by f x plus epsilon m, right.

So, at least in example that you saw, you are getting both the item. So, satisfying this

lower bound right, and it is fairly easy to see why this should be the case, why f hat of x

is bigger than equal to f x. So, let us argue for the first claim at least because even that is

not obvious.

(Refer Slide Time: 09:46)

So, that tricks in the trick in analyzing this is in understanding how the minimum counter

behaves. Because in some sense, I mean if you have noticed in the example, as items

move in an out of the set of k, right the minimum counter acts as the storage. It kind of

stores the it can stores all the updates that have been made to items that were once in a

storage and that have moved out, the minimum counter source at value, ok. So, analyzing

that is the critical part. So, as the first statement and that is fairly easy, what will say is

that at the let me call the minimum countered min, right. And let me say that the value of

the minimum counter at the end is min.



So, what will say is that this value min is at most epsilon m, it is not that big, ok. Why is

that the case? So, here is a critical point, that if you sum up all the counters, right you get

m exactly. So, this is very unlike Misra Gries because here we not doing any deletions,

right? So if a counter if an element moves out of the set, right it deposits it is value with

the minimum counter, right. So, therefore, the total sum of all the count as still m. And

because it is the minimum, the average because we have 1 over epsilon count as the

average is epsilon m and therefore, the minimum of these counters is at most epsilon m,

right.

So,  then that  seems fairly  obvious,  this  is  done,  ok.  So, the  next  is  the more tricky

statement. What will say is that suppose consider an uncounted item at the end, right that

is considered an item that is not present in this list of items that you have at the end, right

look that item be y. So, the algorithm is tracking this list of items right and y is not

present there, ok.

So, what we can say what we can claim is that the true count of this true count of this

uncounted  item is  within 0 and min.  Remember  min  is  this  smallest  of this  counter

values of these of these item they have been tracked this is what will claimed. So, y is

this the case. So, let us imagine the last time y was dropped. So, let us say at step t y was

dropped ok. So, what is it  mean? That means that in the steps from t till  m y never

appeared  away  even,  right  that  in  this  region  in  the  interval  from t  to  m  right  y’s

frequency is 0, ok.

So, because if it had appeared right, then this if it had appeared in this interval, then this

would not have been the last dropped, ok. So now, considere the value of the min counter

at this step, let me denote by min of t right. So, it could be so, fist of fall it is not hard to

see that min of t is less than equal to min. Because the value of the min counter always

increases, right. It never decreases at least, right because everybody that is that is sort of

everybody whose living deposits itself an min counter. And so, it always completely, it

always increases.

So, and now because y was dropped at this step, the frequency of y at this step t is less

than that of the min counter, at this step. So, f of y which is the frequency until step t, but

which is also equal to the total frequency of y because y does any occurrence in the



interval t to m. So, therefore, f of y is less than equal to min t which is less than equal to

min.

And we have argued that min is less than equal to epsilon m, right. Which is something I

mean, but this is a later on stronger statement, that the true count of an un counted item is

within is within 0 and min, right. And therefore, the true count of any un counted item is

less than less than equal epsilon m. Therefore, if an item does our true count bigger than

epsilon m, it must be present in hand at the end, ok. So, this so you need to think about

this proof a little bit, ok.

So, just do that. Basically the same proof can be sort of modify the little bit to proof a

stronger claim, but we will not do that. Because it is little sort of it little complicated, ok.

(Refer Slide Time: 14:27)

So, instead, but will do is move to other kinds of data structures. And here is where the

definition of sketch comes in, right. See, the data structures that we have looked at until

now, this  Misra  Gries  the  2  algorithms  for  frequency saving Misra  Gries  and space

saving these are known as counter based algorithms, right. Because see what is really

happening is that we are sort of adding and dropping count I mean adding and deleting

element ids from this set and we are just keeping counters.

So, that I mean this is more a matter of I mean nomenclature, but these are not known as

sketches. People your find these refer to as counter based algorithms. In practice actually



for I  mean they only really  work for arrival  only streams they proofs work only for

arrival  only streams. But in practice all  arrival  only streams there substantially  more

efficient in terms for space as well as the update time than the other set of more general

algorithms that we look at in a little bit. So, if these are not sketches then what is the

sketch? I mean again informally; a sketch is defined as a compact data structure that

allows both inserts and deletes, ok. So, you should think of it as kind of more having

some linearity kind of properties, right that you can both do updates you can do different,

I mean, both positive and negative updates to the frequency of the of an item, right then

we will call it as sketch, ok.

So, what will do in this sketches is that will somehow compute a linear transformation of

the input. And we will show you over the; I mean we will caste even the sum in this the

algorithms at we have that we seen in this form later. And because you can do both

positive and negative updates, it naturally works for most of it naturally works for arrival

and departure,  right.  Some of it  will  need a  little  bit  of  modification,  but  not  major

modification.

(Refer Slide Time: 16:30)

So, the first sketch algorithm that will considered is known as the count min sketch. And

this was developed by Cormode and Muthukrishnan. So, in order to so think about this

sketch, you I mean again the right we have to think about this is to say that we have we

have frequency. So, think of the inputs stream as a frequency vector, right.



So,  think of it  is  a  frequency vector  for  the dimension is  the is  u  right,  I  mean the

elements  that  have not appeared  in  the stream have frequency is  0,  and the and the

elements that have appeared have the frequency f x, right. And then what we are trying to

do is that,  we get this  frequency vector not in terms of I mean in terms of only the

updates, in terms of only the updates to the frequency vector in; because we see the

element ids with the frequency implicit sort of update 1 or we will see the element id,

with the update plus sum plus c, right. Now the question is that given the stream of

updates, can you answer queries about this the resulting frequency vector, ok. So, what

count min sketched us is that, it sort of it creates a small summery and the summary has

2 parameters. It has a w parameter which has a d parameter, ok.

So, the summary will be outside w times d; there will be w hash functions. Each of them

will map each element of the universe to one of d, right. So, the hash function one will

map each element of the each element of the universe from 1 to d the hash function 2

will map from 1 to d and so on, right. So, how do we use this hash functions, ok.

(Refer Slide Time: 18:36)

So, here is the here is the algorithms. So, in the same sort of frame work that we have

been  writing  others  streaming  algorithms.  That  first  we  do  the  initialization.  In

initialization we choose h 1 to h w. And at this point let us again assume that h 1 to I

mean h w are chosen uniformly at random, right that they are there it is a completely

random hash function.



Again I  will  point  out to  you that you will  not really  need completely random hash

functions, I mean, something like log 1 over delta independences fine or something like a

some constant some key independences is fine some value of k, k universality is fine.

And you also initialized this A w d matrix to be all 0’s, ok. Now what do I do? When I

get a process x, right; so, I could get the item id itself or the item id with some of did.

You look at each other hash functions, right and then you try to see where this particular

hash functions would put this element.

So, you look at the corresponding so, for 1 you look at 1, this is where hash function 1

say is that x should go so, you update this entry, right. Hash function 2 says that hash

function  2 puts  elements  in  this  column so,  update  this  entry. Hash function  3 puts

elements in this column so, you update this entry, and you update each of them exactly

by c right.

So, when you query so, what you do when a query? So, this is interesting, right because

you have you have w estimates now. One for each of the hash functions. So, you can

look at A i h i of x, A 1 h 1 of x, A 2 h 2 of x and A w h w of x. And all these A I mean

here w is 3 so, all these 3 buckets. What do you do? Well, you could have considered

many you could have calculated the average, you could have taken the median. The first

thing will when analyze is what happens if it take them minimum, right. And why is that

are interesting thing to do, ok. And that is why the name count min sketch comes from,

ok.
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So, let us again run a small example, that suppose we have this stream, and suppose I

have written the hash functions out like this. So, each column represents hash function.

So, h 1 maps blue to position 2’s, let say let say this is position 1, this is position 2, this is

position 3. H 1 maps blue to position 2, yellow to position 1, red to position 1, and blue

inter caste position 3, and h 2 maps.

Similarly, so now, first we see a red right. So, if you first see a red, then we get so, h 1

maps red to position 1. So, I get one here, right then I see a blue sorry, and h to maps red

is position 3 So, I may so, I get 1 count of there, right. Then I get a blue right so blue h 1

is mapped to position 2, and h 2 is map to position 1. Can I get another red, here, here,

another red, here, here. Then turquoise; turquoise is position 3, position 2, position 3 and

position 2. Then blue; blue is position 2, position 1, position 2, position 1, red again 3 1 3

red 1 3 and then blue is 2 1, 2 1 turquoise is 3 2, 3 2. Yellow is 1 2, 1 2 and then blue is 2

1, 2 1.

So now the count here is the resulting count here is equal to 6, the resulting count here is

equal to 4 and so on. That is earlier counter is 4, that is earlier counter is 5 and so on it is

clear, ok. So, so this is the data structure that you will have with the end this matrix A, A

w d, right? And suppose we are given the query of the red right. So, I look at the position

1, I mean I get a count of 6 here, and I look at position 3 I get a count of 5 here. So, it



return the minimum of 5 and 6 which means that I returned 5 on query red. So, that is

how the algorithm works.

(Refer Slide Time: 23:24)

So, let us analyze this, why is this good? So, so first let us analyze the easy things, which

is the run time the update time and the space. The space clearly is order w d, times when

this log n, right because you are keeping so many counters. What is the update time?

Well, each hash function updates only one of the positions, ok. So, therefore, each hash I

mean each element does the blue updates, and therefore, the update time is order w.

(Refer Slide Time: 24:03)



So, what are the guarantees?

So, let us set w to be 2 by epsilon, and let set d to be log 1 over delta. So, remember what

epsilon what  we intuitively  want  epsilon and delta  2 be? Epsilon we want the error

parameter and delta we want the confidence of being correct, rather 1 minus delta to be

the confidence of the incorrect; the probability of being correct, ok.

So, delta is a error probability. So now, as we mentioned, right let me define I mean we

have at the end on we have querying we really have w estimates, let me call these Y 1 to

Y w. So, Y i is the has the content of the cell A h i A i h i of x, ok. So, in the final

estimate that we written is really the minimum of these w of this y is, and what happens

is the minimum. So, consider the arrival only model for now because we need to change

the algorithm a little bit to consider a deletions. So, in the A in the arrival only model, it

is not hard to say that each Y i is actually bigger than equal to f of x, ok.

Why is this? Well, it fairly easy because when x comes every instant of x your updating

each of the cells A i h i of x. So, therefore, I mean there could be other updates to the

cell, because of other elements as we saw. So, therefore, each y i is at least f of x and say

and therefore, the minimum of the y is is at least f of x which means f hat of x is at least f

of x.

So, that is nice, but what about the upper bound right, ok.
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Let us now calculate  what  is the expectation of Y i  ok.  So, Y i  is  clearly a random

variable. And the randomness comes from the choice of the hash function. So, what is

the expectation of Y i? The expectation of Y i is a sum over all y such that map in to that

map  in  to  this  particular  bucket,  that  is  mapped  in  to  this  particular  bucket  by  this

particular hash function, and the frequencies of these Y is, right? Summation number all

Y i such that h i y equal to h i of x sum and the sum is and then you sum f y for this y is,

ok. And it is not hard to say that this expectation is really I mean x is there in the set,

right.

So, this expectation is x plus for any other for any other Y i for any other Y what is the

chance that it will be a what is a chance at it will be a map to, what is a chance at it will

be map to exactly this bucket, right? Because the size because it is uniform random hash

functions the chance that any other x; I mean any other y maps in to the same bucket of x

is really 1 over w, right; which is epsilon by 2, and the total frequency of all the other Ys

is really m minus the frequency of x.

So, therefore, the total frequency the expectation here of are all other ys of are all y is not

equal to x is the total frequency times the probability of any one of them mapping in to

this bucket, right; which gives you epsilon by 2 times m minus f x, right and this will

right simply as f x plus epsilon m by 2, ok.
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So, this is nice. So now, we can apply Markov’s inequality right, because, so, consider

the random variable y minus f x, right Y i minus f x. So, first of all, we say that this

random  variable  is  a  non-negative  random  variable,  right  because  of  our  previous

argument that Y i is always greater than equal to f x. So, we have a non-negative random

variable, what is expectation of this random variable expectation of this random variable

is exactly this quantity, right is exactly this quantity, because it is equal to because it is

equal to the expectation of Y i minus f x,. So, so then we have a random variable non-

negative random variable with this expectation therefore, the probability that this random

variable  will  exceed the  value  epsilon m,  right  is  expectation  divided by epsilon  m,

which is at most half

So,  that is imply algebra? So, therefore, the probability that each any one of the Y is

crosses f x plus epsilon m is at most half and we are almost home.

(Refer Slide Time: 29:23)

Now, what are we doing? We are taking the minimum of log 1 over delta of such random

variables, right. Because we are taking the minimum of log 1 over delta of such random

variables;  therefore,  the  chance  that  the  minimum  will  cross  if  the  minimum if  the

probability of any one of them being bigger than if f x plus epsilon m is half,  if the

minimum crosses if f x plus epsilon m; that means, at all of them are bigger than f x plus

epsilon m.



And the probability of that is 2 to the minus log 1 over delta which is less than delta,

right. So, therefore, the probability that the minimum of the Y is crosses f x plus epsilon

m is less than delta. And hence with probability 1 minus delta for any query for any

query x f x lies in this interval f x less than equal to f fat x plus epsilon m, ok. So, let me

go back a little bit, because I might have made I think we made one small mistake, ok.

So, in here assume might already have noticed, the number of hash functions we are

using w for the number of hash functions and w is equal to 1 by delta, and d is equal to 2

by epsilon. So, the rest of the argument will this follows, right the rest of the argument

will this follows because the probability that h i of y equal to h i of x, now is 1 by d, right

which is equal to 2 by epsilon. So, we are just mixed up here, the notation between the w

and the d, that now that is fixed, ok.

(Refer Slide Time: 31:7)

So, just to summarize in this lecture we looked it 2 algorithms of frequency estimation,

one was counter base that was space saving. And the other one was sketch base that was

count min.

So, while I did promise you, I mean sketch base algorithms at work with both updates

and with both additions and deletions. As you mind imagine I mean as you might have

noted the count min proof does not completely work for deletions, right.  And that is

because we are taking the minimum. And so, we were saying that each Y i has to be I

mean has  to  be bigger  than equal  to f  x.  But  that  will  not  be true  if  you are doing



deletions, because Y i could because something else might will be deleted and so, Y i

could small as an f x; however, you can easily fix this, you can easily fix this were taking

the median instead of the min, right. And that you should try to work out yourself. If not

you can look at the lecture notes that I pointed to at the end.

So, the entire algorithm for CM works, the only think that you need to change is that you

when you returning the query in when you are answering the query you take the median

of the estimate instead of the minimum. So, broad guiding principle that I would like to

take is that you should that the way you design the sketches is that first you come up

with error bounds, and confidence estimates and you use these as design parameters so

the data structure. And this principle will come up over and over in the later parts of the

course. So,

Thank you.


