
Switching Circuits and Logic Design
Prof. Indranil Sengupta

Department of Computer Science and Engineering
Indian Institute of Technology, Kharagpur

Lecture – 59
Built-in Self-Test (Part I)

Continuing with our discussion on testing, in this lecture we shall be talking about

something called Built in Self test. Well, in some sense you can say that this is one kind

of extreme in the area of testing because what we are saying that the circuit that you want

to test will have the ability to test itself.

So, a circuit can do something called Self Testing, this is the basic idea and let us see

how it works. So, this is a first part of this topic on built in self test.

(Refer Slide Time: 00:57)

Let us first try to understand the basic concept what the idea is all about. Well, the first

thing is that we want to test a chip, some circuit which is there in the chip. First

important thing to note is that we put in some extra hardware in the chip. And this extra

hardware we will have 2 responsibilities. First is that it will automatically be generating

some test vectors and it will be evaluating the responses of the circuit. Both these things

will be carried out by the extra hardware.

So, from outside we need not have to apply any test factors and on the outside we do not

have to evaluate the circuit responses. Everything will happen inside within the chip or

within the circuit.

So, this as I said this will be done on the chip and because of the extra hardware there

will be some additional overhead involved. And to support this kind of built in self test in

short BIST operation, we need two additional pins; one is an input pin which will be

something like an activation signal. I can tell the chip that well now you can test

yourself, test control and one output pin which the chip tell us that whether the chip is

good or bad. This is how it works.

(Refer Slide Time: 02:35)

Now, this is the very high level schematic. This is the schematic of a chip where I have

said we have two additional pins; one is something called test control and other is good

or bad. The chip will report to the user to the outside world whether the chip is good or

bad. Now, if you see inside the chip in addition to the circuit you want to test you will be

having some test generator circuit and also some response evaluated call it response

compactor circuit inside it.

So, we will be looking into the detail of this test generator and response compactor in the

next few slides.

(Refer Slide Time: 03:27)

But before that let us try to understand the basic question why do we need BIST, what

are the additional advantages we get if we have a built in self test facility in a chip. Let

us try to understand these advantages.

First and most important thing is that we can do field test and diagnosis ok. What is

meant by field test? Field refers to the area where the chip is actually being used. While

it can be used inside our mobile phones, it can be used inside a computer system, in a

laptop or in any specialised circuitry which is deployed anywhere in an industrial control

plant anywhere. So, wherever it is used that is called the field. And what you are saying

conventionally the chips will be tested in the laboratory before hand and then they will

be put in the circuit and then they will be used.

When I say that they would be tested in field it means, let us say a laptop, while the chip

is inside the laptop the chip contest itself. We do not have to take the chip to the lab or

the laptop to the lab for the purpose of testing right.

So, we do not required something called Automated Test Equipment which is normally

used to test circuits or chips which is typically a very expensive equipment.

Now, you can also want to compare this BIST approach to something called software test

for field test and diagnosis which normally we see in our PC’s or laptops. Whenever you

turn on the PC you might have seen that there is some self testing going on, there are

some messages which are coming. And in case there is some problem either in the

motherboard or in the hard disk interface somewhere there will be some error message

either in the form of a audio beep or in the form of a textual message that will come that

come a failure in the memory system also ok. So, these are called software tests for

testing and diagnosis because there is a software which is running which is trying to test

the various subsystems.

But the problem is that the fault coverage is typically not that high. And you cannot have

good diagnosis. You can say just the motherboard is bad, but exactly which chip of the

motherboard is bad you cannot tell that you cannot pinpoint that right. And of course, it

is time consuming; it takes many seconds to complete the test. But if you do it in BIST in

hardware the advantages is that you can have much better diagnosis. Why? Diagnosis

means to locate the source of fault.

So, if every chip contests itself then the chip which is faulty can tell you that well I am

bad. So, you can replace only that chip. And another advantages that because of that you

can have much improved system maintenance and repair capabilities. These are some of

the additional advantages you have.

(Refer Slide Time: 07:03)

This is a little more detailed schematic for the BIST schemes or the BIST architecture.

Let us see in the centre you have the circuit that you want to test circuit under test.

Normally, the circuit will take it is input from some primary input lines that is call it PI,

this can be coming from outside. But while in the test node there will be some kind of a

pattern generator inside the chip. The input to the circuit will be coming from the pattern

generator and there will be a multiplexer here, so which will be selecting either PI or the

pattern generator outputs to be fed to the circuit.

Similarly, the output side normally the output will go to some primary output lines, but

now here some kind of response compactor circuit is there which will be compressing

the output or compacting the output to a small some kind of signature we will talk about

this.

And the good signature will be stored in a small memory, ROM which you can compare

and at the end if it matches you say that which chip is good. If it does not match you say

your chip is bad. And there will be a finite state machine you can call it a test controller

that will be control the operations of the multiplexer, pattern generator, response

compactor everything. And it will be activated whenever the test control pin goes high, I

mean is activated. This is how the whole thing works.

But the point to notice that, well there are some drawbacks. See some paths in the circuit

you cannot test like from the primary input pin to the input multiplexer this part you are

not able to test. You are testing with respect to patterns from the pattern generator, but

from the primary input if there some fault in this path you are not able to test this. And

similarly the primary output the circuit output your compact in the response compactor,

but if there is any fault in this part of the circuit sorry then this part will not be able to

test. These are some of the drawbacks here.

(Refer Slide Time: 09:34)

Now, with respect to test pattern generation inside the chip the standard technique that

we follow is some kind of random pattern generation because we talked about test

pattern generation earlier. Well, we can spent lot of time and effort to generate an

optimum set of test patterns, but when you say I want to generate this test patterns

automatically by hardware how will you do it? If the test patterns does not have any

relationship between them then the only way you made it is to you will have to store it in

some memory and from the memory you cannot put the patterns one by one, but the

trouble is that the overhead of the memory can become high.

Let us say if we need 1000 test patterns, you need a large enough memory to store 1000

patterns and also and the output side you will be requiring 1000 circuit responses ok. So,

your hardware requirement will be larger. So, the standard way is to use some kind of

random pattern we call it pseudo random patterns because this random patterns can be

repetitively generated. And how do we generate? We already discussed this kind of a

shift register structure using linear feedback shift register which we mentioned. It can

generate very good random patterns. So, using LSFR you can generate these random

patterns.

And well you know what is meant by fault coverage. In BIST, I may want that while I

require 95 percent fault coverage, but how many such random patterns are required to

achieve 95 percent coverage I cannot predict beforehand. This has to be done a priori

through fault simulation. You can generate the patterns from this LFSR, you can carry

out fault simulation and find out how many faults are getting detected.

So, as soon as it reaches 95 percent you know that how many patterns need to be

generated and that way you can configure your test generation inside the chip.

So, there are two things because of LFSR based test generation a test length may be

much larger. Like you may required only 10 test patterns to be generated, but LFSR the

patterns are generated in some random order.

So, there you may find to achieve 95 percent you may need to generate let us say 200 test

patterns. So, the number of test patterns required maybe larger, but you really do not care

because a generating tests at a very high frequency. So, it will take hardly a fraction of

second.

Much fastest test generation; so, this is normally how it. There is sometimes you can

combine random pattern with automated test pattern generation based testing also, but

here we are not discussing this.

(Refer Slide Time: 12:53)

So, this is the typical behaviour of a circuit. So, as you increase the number of random

test vectors and through fault simulation, if you calculate the fault coverage, you will

find that it will increase like this, initially very rapidly, but it will slowly level off. Well,

for very rare cases it will reach 100 percent, but normally it will level off in the range of

let us say 80 percent, 90 percent, 95 percent like that. So, you can fix up some acceptable

level, you reach up to that you see that how many test patterns you will be requiring to

reach this acceptable level, this is your acceptable level ok. So, you run the LFSR for

these many clock cycles, fine. This is how you proceed.

(Refer Slide Time: 13:46)

Now, coming back to linear feedback shift register, we have earlier very briefly talked

about it. Let us have a relook into it. Linear feedback shift register is a simple hardware

circuit which is based on shift register. You recall there is a feedback circuit which is

consisting of Exclusive OR gates and earlier we told that exclusive OR is a linear

function. That is why we call it a linear feedback shift register. And it has been found that

LFSR can generate very good pseudo random patterns.

And talking about applications, not only for testing there are many other application

where this LFSR is used. For error checking, using cyclic redundancy check, later on for

response compression or compaction we shall see it later, there again LFSR will be

using, for data communication application where there can be errors you can again use

LFSR for error detection and stuff like that ok. So, there are many applications, but here

we are interested in test pattern generation for the time being.

(Refer Slide Time: 15:06)

So, LFSR looks like this. There can be two types of configuration. Earlier, we looked at

only the first kind of configuration. This plus is actually an Exclusive OR gate. So, we

have just shown it like this. This is actually a two input XOR gate. So, one input is

coming from here. And other input is coming from the output of D4 from here and the

output of the XOR gate is feeding to the input of the first flip flop.

So, there are 4 D type flip flops which are connected as a shift register. And we use a

linear feedback circuit using Exclusive OR and from some tapping point we take the

feedback connections. This is called type 1 LFSR.

Well, you can have another kind of LFSR design also where the Exclusive OR gates are

not outside in the feedback, but they can be just inside in the forward shift register path

that means, this Exclusive OR for example, can be connected directly like this. One input

coming from here output of D 3 and one input coming from out of D4 from here right

and output will go to D 4. So, like this you can have here here here, it depends where you

want the tapping points. This is type 2.

Now, we shall see later this type 2 LFSR is more suitable for response compaction, but

for test generation purposes normally we use type 1 LFSR.

(Refer Slide Time: 16:52)

Let us take an example of pattern generation using this kind of type 1 LFSR. Now, this is

an example of a type 1 LFSR. And I mentioned earlier very briefly, but let me again tell

you here that the behaviour of an LFSR depends from the points from where you are

taking this feedback connection ok. Now, let us say if every flip flop output you regard

as the coefficient of a polynomial x to the power 4, x to the power 3, x to the power 2

and x then you see from where you are taking the feedback. And of course, this is x to

the power 0 or 1. You are taking feedback from x to the power 4 and x.

So, you define something called the characteristic polynomial of the LFSR. Here, you

show the corresponding terms; x 4 and x because the output of the XOR you are feeding

to x to the power 0, this x to the power 0 term is always there ok. This will be the

characteristic polynomial of the LFSR. This is called characteristic polynomial.

Now, let us assume that this LFSR we initialize with 1 0 0 and 0. You see yes 1 point, if

you initialise it with all 0, it will remain in the all 0 state because Exclusive OR of 0 and

0 is 0, 0 will fead back. So, it will never come out of 0, but let us say we feel it 1 0 0 0.

So, I show it like this. The first it is 1 0 0 0 and clocks are applied one by one. So, what

will happen in the next state? You see 1 and 0 are fed to the input. So, XOR output will

be 1. So, in the next clock cycle, 1 will be fed back and everything else will be shifted

right. So, it will be 0 0 0 1 you see, next is 0 0 0 1. So, like that if you just check you will

see that it will be generating various patterns 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15. And

after the 15th pattern again 1 0 0 0 comes back. So, you see what we have told that for

LFSR the all 0 pattern if we apply it will never come out of it.

So, in 4 bits there are 16 possible patterns. So, there are 15 remaining non zero patterns.

Now, for this example for instance if you start with any non zero state like 1 0 0 0, the

LFSR will go through all possible 15 states and in a random order. You see if you look at

the decimal equivalence you will have an idea; 8 1 3 7 15 14 12 10 5 then 11 6 12, this

13 this 12 9 2 and then again 4. So, these are apparently random.

So, you see this LFSR is able to generate all non zero patterns in some random order.

This is one very good property of a LFSR that it can generate all the patterns for a given

size if you choose a characteristic polynomial in a proper way. So, we will have some

discussion on this.

(Refer Slide Time: 21:02)

So, the LFSR let us say an n stage LFSR which generates all 2 to the power n minus 1

patterns like in the example I took earlier. We call it a maximum length sequence that the

LFSR generates the maximum length sequence in short we call it m sequence and the

characteristic polynomial of the LFSR that generates an m sequence is called a primitive

polynomial.

So, from the point of view of test generation we are more interested in primitive

polynomials because they can generate all the patterns and we need as many patterns as

we want.

So, here there is a characterization of a primitive polynomial. It is a polynomial it is

called irreducible which cannot be factored. It does not have any factors and this

primitive polynomial is a type of irreducible polynomial. I am not going with the detail

of this. Because if you want such primitive polynomial you can refer two books you will

find that a big list is given.

(Refer Slide Time: 22:26)

Here, I am showing list of primitive polynomials up to n equal to 64, but in the books

you will see up to several thousands this kind of things given. The ideas that if we use a

polynomial like this which means I need an XOR with forget 1, this is the output with 4

inputs. I need a 4 input XOR in the feedback, but it is guaranteed that I will be

generating so many unique random patterns, non zero random patterns. These are all

primitive polynomials.

So, I did not have to calculate primitive polynomials. A list is already prepared by

someone; we can simply take from that list ok.

So, you see if I have a 64 input circuit I can take a 64 bit LFSR. And through fault

simulation I can find out how many patterns I need to generate to reach a certain fault

coverage because 2 to the power 64 is a really a huge number, we never would required

to apply or possible patterns right.

(Refer Slide Time: 23:48)

So, there are a few interesting properties, I am not going into all of them because all of

them may not be interesting in this context that the period of the m sequence as I said is 2

to the power n minus 1 because after 2 to the power n minus 1, the patterns repeat itself.

So, starting from any non zero state as the truth table showed the LFSR will go through

all the non zero 2 to the power n minus 1 states before repeating. And in every column of

the truth table if you check that the number of 1’s will be different from the number of

0’s by 1, number of 1’s should be more by 1 just because the all 0 pattern is not there that

is why number of 0’s will be 1 less and the next two points are not so, important in the

present context. So, let us not discuss this right now.

(Refer Slide Time: 24:50)

So, randomness property is something which is important in our context. The maximum

length sequences that are generated they are called pseudo random sequences. You see

there are some standard tests for randomness. It is found that most of the random this

kind of randomness tests are very well satisfied by the patterns which is generated by

LFSR. Like, the autocorrelation of any of the output bit whatever bit patterns is

generated is close to 0. The correlation of any two output which is close to 0, but the

cross correlation is poor because it is a shift register, whatever pattern is generated by 1

bit in the next bit the same pattern will be generated by respect to 1 bit time shift. This is

the only drawback. Just other than that all other properties are very well satisfied ok.

So, as it said in a typical test environment we can generate as many patterns as required.

And this another advantage, you think of this scan base testing scan path which we were

discussed in the last lecture. For applying every test pattern we have to serially shift

some pattern in a shift register then apply the pattern which means, we cannot operate

the circuit at the maximum possible rate with which circuit is to supposed to operate, but

here we can. The test patterns can be generated in the maximum related frequency of the

circuit here, let us say 1 gigahertz 2 gigahertz whatever it is. And this is called AT speed

testing that we are testing the circuit at the maximum clock rate. This is another

advantage. Many of the timing errors also get detected in this process.

So, with this we come to the end of this lecture where we have discussed how test

patterns can be generated in a built in self test environment. In the next lecture, we shall

be looking at the other part how this circuit responses can be compact it to take a

decision whether the circuit is good or bad.

Thank you.

