
Switching Circuits and Logic Design
Prof. Indranil Sengupta

Department of Computer Science and Engineering
Indian Institute of Technology, Kharagpur

Lecture - 57
Test Generation Pattern

We now talk about the problem of Test Pattern Generation. Earlier, we have already seen

that given a circuit, gate level circuit is example you talked about. We can define a fault

model. Stuck at fault model website is the most widely used fault model and in all the

examples we shall be showing now we shall be considering this single stuck at fault

model. So, the title of the lecture is Test Pattern Generation.

(Refer Slide Time: 00:50)

So, let us see what is the scope of test pattern generation. So, we have a circuit we have a

circuit C. We have a list of faults F; we call it a fault list. Then we have a set of test

vectors that we want to generate. This will be our output, our input is the circuit and the

list of faults. The objective of test pattern generation is to generate a set of test vectors to

detect all the faults in F. Like for example; we took examples earlier. If I have a three

input XOR gate, my fault list will concern; see there are 4 lines. So, my fault list the size

of the fault list will be 8 there will be 8 faults, but my test set will consist of only 2

patterns; 000 and 111. So, given my circuit this should be my output ok, this is what we

want to solve here ok.

(Refer Slide Time: 02:09)

\

So, this motivation we have already taken some examples earlier, but let us again repeat

this. Test generation can drastically reduce the number of required test vectors; like the

example of an Exclusive OR gate that we have taken, that any odd input XOR gate will

require only 2 test vectors for testing all single stuck at faults. You take an AND gate

with 4 inputs and 1 output. Normally, speaking the number of input combinations are 16,

so, for truth table verification you would be requiring 16 test patterns, but we have seen

that only 5 test patterns are sufficient to detect all signal stuck at faults.

So, there can be a drastic reduction in the number right. So, these are some of the

examples that I am showing here. For a 4 input AND gate these are the 5 test vectors you

need. For any odd input XOR gates you need only 2 test vectors. So, from 16 you come

to 5, from 32 you come to 2; that is a drastic reduction.

(Refer Slide Time: 03:40)

So, let us take an example net list with 3 gates. You see there are 2, 4, 5, 6, 7; 7 lines. So,

there are 14 single stuck at faults.

So, I am just showing, this is not the process how we are generating. Let us see the test

vector 1011, what are the faults it can detect? 1011, 10 means here I get 1, here I get 1,

here I get 1. So, you see a fault will be detected if the output G in the absence of fault

Exclusive OR, the output in the presence of fault is 1, which means they differ. This is

the necessary condition for detection of a fault.

Now, 1011 since the output G is 1, so, obviously, G stuck at 0 will be detected and E F

are both 1. If either E is 0 or F is 0 then G will be 0, G will change. So, this fault will be

there of course, E stuck at 0 is missing here, E stuck at 0 will also be there, E stuck at 0

will also be there and similarly here let us say either C or D, if either C or D becomes 0

then F will be 0 intern G will also be 0 will change. So, C 0 D 0 will also be there. On

the other side, if A is 0 output of this OR gate will become 0 and hence G will be 0. So,

A 0 will also be there.

So, like this if you check you will find that these stage vectors are able to detect these

faults and you will find that these five test vectors are sufficient to detect all the 14 faults

in the circuit it includes all the 14 faults just an example to illustrate. So, this I suggest

you verify all the other test patterns and check whether this faults are getting detected ok,

fine.

(Refer Slide Time: 06:15)

Now, let us let us talk about some of the methods of generating test in a systematic way.

Let us consider that I have a circuit which implements the function f equal to a b or b c.

Here I am giving method where I am showing a truth table. For the inputs a b c these are

the f the output values a b or b c a b or b c sorry a b or a c not b c a b or a c a b a c. Now,

suppose we consider a fault on this line stuck at 0, we call it alpha. If this line is stuck at

0 that mean this is always 0. So, effectively the function in the presence of fault will be

only a c because if this is 0 the term a b will disappear this will become 0. So, the

function f alpha in the presence of fault will be only a c.

So, whenever a and c are 1 then only they will be 1. So, from the truth table the idea is as

follows, let us just omitted. You look at all the rows and you find out the rows where f 1

f alpha are different; you see that they are differ here. So, 110 will be your required test

vector. If we apply 110, then in the absence of fault output will be 1 and in the presence

of the fault output will be 0. So, you can detect. So, this will be your required test vector.

Well, but the problem here is that well you see you have to start with the truth table. And

constructing truth table for a large function is not easy.

Suppose I tell you that I have a 30 variable function. 2 to the power 30 means how

much? It is about 1 billion ok. So, it is huge. So, you really cannot construct a truth table

of that size and compare the fault free and faulty output and see why they differ. So, this

method all that is good for understanding this cannot be use for large functions.

(Refer Slide Time: 09:17)

So, let us talk about a systematic method called the method of Boolean differences this is

an algebraic method meaning that you have to carry out some algebraic calculation in

order to find out what test vectors can detect the fault. Let us try to understand the basic

principle behind the method first.

Now, we define something called Boolean difference. Consider an invertible function f, f

is a function of n variables X 1 to X n. So, when we define the Boolean difference it is

with respect to some variable X i let us say X i. The idea is very simple. I have the

function. I am talking about a variable X i, first I set X i equal to 0, let us look at what

the function is. I set X i equal to 1, let us say what the function is.

Then we take the Exclusive OR of these two functions that is what is defined as the

Boolean difference. Let us see Boolean difference notationally this is expressed in the

derivative notation d f d x i and as I had said first in the function you set X i equal to 0

then in the function you set X i equal to 1 and take the XOR. The function with X i equal

to 0 in short there is a notation f i 0; f suffix i 0 means, the function with X i equal to 0

and f i 1 means, the function with X i equal to 1 ok.

So, what does the Boolean difference really mean? Y8ou say I am taking the Exclusive

OR of two functions. Now when let me erase this. Now when will the exclusive or of 2

function be equal to 1? This will be 1 if either their values are 0 1 or 1 0 ok, which means

this condition says that whenever X i changes the function also changes this is at indirect

way of saying it. Boolean difference equal to 1 means, when the variable X i changes the

output also changes that condition ok fine. This is what Boolean difference means.

(Refer Slide Time: 12:35)

Now, this is what I just now told. Boolean difference specifies the condition under which

change in line X i will make the output change, we say will propagate to the output, the

change will propagate. Now, talking about a fault on line x i stuck at c, c can be either 0

or 1; we are talking about either x i stuck at 0 or x i stuck at 1. So, to detect a fault there

are two things to be satisfied. Let us see let us take a very simple example to illustrate

what I am saying. Suppose this is my line x i and I am trying to detect a fault x i stuck at

0.

To detect a fault x i stuck at 0, the first thing I have to satisfy is I have to apply a reverse

logic value at the line where I am trying to detect the fault because if I apply a 0 then

stuck at 0 also it will be 0 and 0 is also 0; so, I cannot see any change. So, first condition

is the reverse logic value c bar must be applied to x i, we call here that we are exciting

the fault. Then the change on this line i, there is a change we are forcing on this line i .

Normally, it will be 1 if there is a fault it will be 0. So, this change must be propagated to

the output. How is the change we are expressing?

We are expression by the Boolean difference. So, these two things must be combined

together.

(Refer Slide Time: 14:17)

So, what we are saying that the two things combined together we are saying that if we

want to detect X i stuck at 0 we have to set X i to 1 first, which we denote by X i and the

change must be propagated to the output, which we are expressing by the Boolean

difference. This and this must be 1 which means, X i should be 1 and also Boolean

difference should be 1. Similarly, for X i stuck at 1 I have to set X i equal to 0. So, that

here I am writing X i bar. So, X i bar means X i has to be 0 and Boolean difference has to

be 1.

That means I am exciting the fault and I am propagating the change to the output both

the conditions must be true simultaneously. This is the basic idea behind the method of

Boolean difference. Let us take an example. This is what I had said excite the fault either

X i or X i bar and propagate the fault is a Boolean difference ok.

(Refer Slide Time: 15:34)

 Let us take a slightly complex circuit like this. Here there is a circuit with 5 gates. So, if

you compute the function realise you see function is this A plus B C bar and or C D. So,

if you compute the Boolean difference let us say we want to find out some faults on line

C.

So, we are computing d F d C. First we are setting C equal to 0, if in this F you set C

equal to 0 the second term will disappear and C bar will be 1. So, only A plus B then C

equal to 1, C equal to 1 means C bar is 0 this will disappear only D. So, XOR D. So, if

you expand this I am not showing the steps, the final expression will be this ok. So, when

you are trying to detect C stuck at 0, the condition will be C and Boolean difference

equal to 1. Boolean difference I have already calculated C and this. So, it will be A C D

bar B C D bar A bar B bar C D bar.

From here directly you can know what are the test vectors will be generated. See A C D

bar means A is 1 there is no B. So, B is do not care, C is 1, D is 0. The second term there

is no A. So, A is don’t care B C D is 0 here 0 0 1 1. Similarly, for C stuck at 1 you have a

C bar here. So, the expression will be like this. So, A C bar D bar A B is not there C bar

D bar like this. So, you see the good thing is that for this fault you are getting all test

vectors which can detect it; don’t care means it can be either 0 or 1. So, it can be 1 0 1 0

or 1 1 1 0 and this 0 1 1 1 and 1 1 1 0 we have already included and 0 0 0 1.

So, there can be 2 3 4 possible test vectors here ok, similarly here. So, this is the method

of Boolean difference where with respect to the input if you take the Boolean difference

then you can directly generate all the possible test vectors that can detect either stuck at 0

or stuck at 1 faults on those lines ok. This is an algebraic method, it generates all faults,

but because it is algebraic it is difficult to automate it is difficult to write a program ok.

So, practical test generation tools are normally not written using this Boolean difference

method because of this problem.

(Refer Slide Time: 18:54)

So, I am giving an idea what kind of methods are used there. There is something called

path sensitization, I will just give you the basic idea behind this. So, you will have an

idea. See for testing we still follow the same principle as Boolean difference. We have to

excite the fault means, reverse logic value I have to apply and propagate the fault effect

to the output. The difference between Boolean difference is that for Boolean difference

we started with the function expression and did algebraic manipulation, but in the

method of path sensitization we start with the gate level circuit and whatever we do we

work at the gate level circuit only ok, this is the difference. So, let us see what will

happen.

And another thing is that when you are talking about propagating let us say let us take an

example. Suppose, I have a gate here the output is going to some other gate, let us say it

is a NAND gate; this is the output and I am talking about a fault on this line, this is

alpha. So, some change on this line must be propagated to the output. So, what we are

saying is that whenever some gates are encountered in between like it is a NAND gate

what should be the other input because if I apply a 0 on the other input the output will be

permanently 1, the change will not be propagated.

So, I have to apply 1 on the other input. This is called non controlling value. Similarly,

for AND gate also it will be 1, for an OR gate it should be 0, for a NOR gate it should

also be 0 ok, then only the change will propagate. This is what you mean by non

controlling value. So, we will take an example.

(Refer Slide Time: 21:07)

But the basic principle just works in two phases. So, what you do? I will illustrate these

steps with an example do not worry. So, at this site of the fault suppose we want to detect

the fault. So, on the line where the fault is there, you assign a logic value that is reverse

or complement of the polarity of the fault. Like in a line f, if you want to detect f stuck at

0 then you apply f equal to 1, the reverse value.

Then forward drive phase; from this site of the fault the line where the fault is there you

select a path to one of the outputs. You sensitize the path by assigning non controlling

value we just now said what is non controlling values. So, that change at the site of the

fault will be propagating to the output. After we have done this enough to do a backward

trace phase because whatever logic values have assigned you have to backtrack. So, that

all the primary inputs are assigned appropriate values.

So, once we have done that you know what are the inputs that have to be applied. This

steps, let me explain with the help of an example then it will be clear.

(Refer Slide Time: 22:41)

Take a circuit like this, there are 5 gates and suppose we want to detect a fault on a line

E; this E is the output of this OR gate E stuck at 1. So, in the first step what we said?

That a reverse logic value must be applied at the site of the fault. So, because we are

talking of E stuck at 1 what we do? We apply a 0 at the site of the fault, the reverse logic

value right. This is the first step.

Then from the site of the fault we have to select a path to the output. Here there is a one

path only from this H to Z. So, next step we have to propagate the fault effect to the

output. So, there is only one path no option and we have to apply non controlling values.

See change on line E must propagate as a change on Z. For that you see I have an AND

gate here, I have an OR gate here. I told for an AND gate non controlling value is 1, for

an OR gate non controlling value is 0. So, what will happen is you will apply a 1 here

and you will apply a 0 here.

So, if we do this then it is guaranteed that any change on line E will be propagating as a

change on line H and a change on line Z output right. So, your forward drive phase is

done. Now you have to do backward propagation. You see backward propagation what is

the basic idea that you have set this line E to 0, line F to 1 and G to 0, but what we have

not done it is that you do not know what values have to apply to A B C D. So, from E

equal to 0 I have to propagate back, from F equal to 1 again I have to propagate back and

from G equal to 0 again I have to propagate back.

This is back this is called back propagation. I have to finally, assign some values to A, B,

C and D ok.

(Refer Slide Time: 25:20)

Back trace towards the primary inputs and assign values to the gate inputs. So, to make

the output of this OR gate 0, both the inputs must be 0 0 A 0 B 0 done. Now, F is 1, so,

this NOT gate should be 0, which means, C is 0 and if C is 0 the value of G is

automatically 0, you do not have to do anything more it is already done; so, D can be

don’t care. So, you have got a test vector A 0 B 0 C 0 D don’t care. You see this is the

basic idea behind the method of path sensitization.

This is very simple in concept you see from the gate level netlist, you can simply

propagate forward and backward and generator test. So, test vector will be this.

(Refer Slide Time: 26:17)

But the thing is not so simple if you remember something very clearly, that this path

sensitization method is not as simple as this example shows because during backtracking

or back tracing there can be conflicts. Some path may tell that an input A must be set to

0, but some other path may tell that A must be set to 1, which will not work. So, you will

have to go back make some changes and again come back, lot of backtracking may be

required in such cases ok or more than one paths may need to be sensitized together, but

these are a things I am not discussing here.

But you should remember this because the practical tools are much more complex than

what I have shown in the example. Very good automated test pattern generation, it is

called ATPG; Automated Test Pattern Generation, such ATPG tools exist and sequential

ATPG tools are more time consuming, we shall see later how sequential circuit test

pattern generation can be handled and as I had said; we shall not be discussing fault

simulation here in this course, but you should remember one thing that the process of test

generation because of it is complexity is typically slower than fault simulation.

So, with this we come to the end of this lecture. In the next lecture we shall be talking

about some of the techniques that we can follow for generating test for sequential

circuits. Namely, generic strategy called design for testability. This we shall be

discussing in the next lecture.

Thank you.

