
Switching Circuits and Logic Design
Prof. Indranil Sengupta

Department of Computer Science and Engineering
Indian Institute of Technology, Kharagpur

Lecture - 54
Algorithmic State Machine (ASM) Chart

In this lecture, we shall be talking about something called algorithmic state machines or

ASM charts which you sometimes call, which is a very useful tool for designing

sequential circuits, particularly complex circuits. So, the lecture title is algorithmic state

machine or ASM chart.

(Refer Slide Time: 00:41)

Let us see what an ASM chart is. But this ASM chart is some kind of a tool you can say,

it is a pictorial tool just like a flow chart or a state transition diagram that we use to

represent finite state machines something similar, but it captures a lot of information with

respect to the FSM we will see. This is quite useful for specifying detailed logic for

sequential circuits which I said is somewhat similar to flowcharts.

Now, it specifies two things together. It specifies sequence of events that is reflected in a

sequential circuit behavior; also it reflects timing relationship between the various states

of the finite state machine. Now, in a finite state machine you recall there are two kinds

of pictorial elements, one we represent by circles the states and the transition represented

by arrows. Now, along the transition we specify the inputs and the expected outputs.

Now, in an ASM chart there are three kinds of elements which are shown. We shall see

this things state box, decision box and conditional box. Let us see the function of these.

(Refer Slide Time: 02:25)

First the state box. State box is a rectangular box as is shown in this example here which

represents the state of an machine. Well, if you think of an FSM a finite state machine

where you represent states like this let us say S 1 S 2 and so on and arrows indicating

transition from one state to another. So, each of these states is represented in ASM by a

state box.

Now, in this state box, you have a state name either you show this state name inside with

a slash like you can write S 1 slash. In the output optionally you can mention the output

lists or the name you can also show outside the box on the left, there are several

conventions, you can use any one of them. And inside the state box you could also

contain some register operations to initialize the values of registers like here you can

have some register operations optionally. And each of these state boxes can have some

state assignment.

Like you see when you specify a finite state machine, you only mention the states S 1, S

2, S 3 and so on, but you think that when you synthesize a machine, when you in the

process of implementing it in hardware. You also carry out some state assignment like

you may say that this state S 1 will be using this code 0 0. So, in the state box, the state

assignment is also specified typically in the upper right corner of the box. This we are

calling as something called state code. Well, we will take some example to show how the

state boxes are created, but this is how or these are the information it contains. And there

can be optional output list also.

(Refer Slide Time: 04:56)

Then comes the decision box. Just like a conditional box in a flowchart, where if it is

true, you go here; if it is false, it comes here. It is a diamond-shaped box, but it can be

more general. So, when instead of two outcomes, there can be multiple output nodes

depending on how many possible conditions can be there. So, in the simplest case, it

came a binary decision as is shown in this diagram yes or no, or 1 or 0 right. And

conditional box is a last one; it is an oval shape in box, which contains some output list.

Like suppose I create an oval shape in box I mention Z 1, Z 2; it means that these 2

outputs Z 1 and Z 2 must be set to 1. And this input arc for the condition input list must

be coming from a decision box maybe from the decision box, it will be coming right,

these are the constraints.

(Refer Slide Time: 06:20)

Let us look at a somewhat complete kind of an ASM block that how it looks like this is

an ASM block. First thing is that what is an ASM block? ASM block is something that

corresponds to one state of the corresponding finite state machine. So, every state of the

FSM let us say there was an state S 1, it was going to some state S 2, going to a some

state S 3, maybe there was a self loop depending on input combinations. So, every state

will be mapped to an ASM block, ASM block is a structure which will be consisting of

one state box corresponding to that state.

In this diagram that state box is shown here. So, you see here this state name is given as

S 1 with an optional output list Z 1, Z 2; it says that these are the output list of the state

box. Now, this you may give, may not give this is optional. Now, inside the state box

there can be decision boxes and conditional boxes connected to it is so called exit path.

There can be more than one exit path as is shown here; there can be n exit path in general

1, 2, 3 up to n. An ASM block will have exactly one in turn entry path or entrance path,

but it can have multiple exit paths.

Now, inside it what kind of things you can have? You can have a decision box like this.

Like you check X 1, if X 1 is 0 false you come here; if X 1 is true, you come here which

means, if X 1 is false you set Z 3, Z 4 to 1. Then check X 2, if it is 0 you follow this exit

path; if it is 1, follow this exit path. Then along this path you can check the condition X

3; if it is 0, you said Z 5 to 1 and exit through 3, if it is 1 you continue with something

else. This is how generally an ASM block looks like.

(Refer Slide Time: 09:12)

So, let us explain this that same example. So, when this system enters this state S 1 from

the entrance path, first we have mentioned the two outputs Z 1 and Z 2 here means the

output Z 1 and Z 2 are immediately set to 1. Then condition X 1 is checked. If X 1 is 0

which means this path Z 3 and Z 4 there also set to 1; but if X 1 is both X 1 and X 3 are 0

like say both X 1 is 1, this should 1 actually X 1 is 1 and X 3 is 0 you follow this path,

then Z 5 becomes 1 and the system exits.

(Refer Slide Time: 10:16)

Now, there are some rules you need to follow when you are creating an ASM chart, you

should remember this. For this same system specification, you can have multiple

possible ASM charts, you can draw again several different ways, but certain rules must

be followed. Like the first one says that for some, for every valid combination of input

variables, like let us let us take an example there are three input variables x 1, x 2, x 3, let

us say x 1 is 0, x 2 is 1, and x 3 is also 1 0 1 1. For every combination there must be

exactly 1 exit path, that means, in that ASM block for this 0 1 1 combination, you must

be following the same exit path, there should not be multiple exit paths.

And inside the ASM block, internal feedbacks are not allowed; it should be only from

top to bottom kind of transitions. Parallel paths to the same exit paths are allowed, there

can be multiple paths going to the same exit path. More than one parallel path can be

active at the same time; this can be active, this can also be active such things are allowed.

And as I showed in the previous diagram there can be multiple exit paths. So, such rules

should be followed when you are drawing or creating an ASM chart.

(Refer Slide Time: 11:58)

Let us take a small example. So, here we shall show how an FSM can be converted into

an equivalent ASM chart. So, we start with a simple FSM description of a sequence

detector example, a sequence detector which detects a sequence 1 0 1 in the input

sequence. Just look at this state diagram this is the starting state the top one. So, if the

input is 1, you move to this state.

So, if the input is again 0, you move to this state. And if you get a third one, you move

back to this state with the output 1 that means, you have found out this sequence. Now,

this third one means there can be overlapping sequence also like this. The third one

means, you have detected a 1 0 1 here, but it can be the start of the next 1 0 1. So, you

move back to this state, so there can be another 0 another 1, so this second sequence can

be detected again right. So, from here, if it is 0 that means, you have to start from the

beginning you go back here right. Now, let us see.

Here once you are trying to detect this sequence 1 0 1, so you have an FSM, where I am

assuming there is a single output Z, and a single input X. This X denotes the serial bit

stream, and Z is the final output 0 or 1 right. So, the output will be 1 only when 1 0 and 1

is detected right. There are three states in this FSM; this will correspond to three ASM

blocks. And let us also make the state assignments. Let us say this state is S 0; this is our

S 1; this is our S 2. Let us make this state assignment also 0 0 0 1 and 1 1. Let us say. So,

let us show how the ASM chart may be constructed from this FSM.

(Refer Slide Time: 14:39)

So, here some of these symbols are not visible, I shall show them. Let us again talk about

the three state, this is S 0, this is S 1, and this is S 2. So, one by one, let us see. This is the

ASM block corresponding to state S 0, this is state S 0. So, the state encoding is also

shown here 0 0. So, the output list is default, it just shows the state name S 0. So, you

look at this state is the what it does, if the input is 0 it remains in S 0; and if the input is

1, it goes to S 1 in both cases the output is 0.

So, you see if X is 0 left side, you said Z equal to 0, because output is 0. And you go

back to this same state, you remain in S 0. But if it is 1, then also Z is 0. And you go to

this transition you go to S 1, you move to S 1 right. This is your state S 0, so exactly

similar to here. Now, let us look about state S 1, this is your state S 1, your state

encoding is shown here 0 1, this state name is mentioned. Now, in this state S 1, if it is 0,

it goes to S 2; if it is 1 it remains in S 1 so, let us see. So, if x is 0, then you set output to

0; and you move to state S 2. But if it is 1, then also output is 0; and you remain in the

same state remain in state S 1. So, exactly from the FSM you are mapping here.

Now, the last state S 2, this is your S 2 and this is the state encoding 1 1. Now, in S 2 this

is your S 2. If it is 0, you go to S 1, you go to S 0, if it is 1, you go to you go to S 1. And

here the output is set to 1. Let us see what you have done, if input is 0, you go to Z 0 and

you move to here state S 0. But, if the input is 1, you set Z equal to 1 and you move here

to state S 1.

So, you see exactly from the FSM, you can have a one-to-one mapping to the

corresponding ASM chart. Now, you may ask that why do you need this ASM chart, the

FSM was good enough right, but you see this ASM chart is one step forward towards

implementing the hardware circuit, implementing the circuit, because you have also done

the state assignment. Normally from the ASM chart you can directly design the hardware

circuit. So, each state box will correspond to a flip flop and after that some gates you can

add you can directly implement. So, it is really easy to map it to hardware that is why

sometimes from the FSM, you create the ASM chart from the ASM chart you can create

the hardware.

So, in this lecture we have given you a very brief introduction to ASM chart. As it said

ASM chart is useful for the complete description of our system, which is more powerful

than an FSM, because it can also capture the state encoding. And particularly for more

complex system for larger FSMs, this ASM chart is sometimes considered to be an useful

tool. So, if you are a system designer, if you are using these tools for designing complex

systems, well FSM is of course, one way and you have already seen earlier starting from

an FSM, how you can formally synthesize a sequential circuit, but ASM is another route

just using ASM also you can generate a hardware. Of course, your hardware may not be

that efficient, but for more complex systems it is a fairly simple approach to do that.

So, we have discussed, means almost all the aspect different aspects that you wanted to

discuss regarding digital circuit design and synthesis particularly at the gate level and the

flip flop level. We talked about synchronous circuits; we also talked about asynchronous

circuits. Now, in the next few lectures we shall be discussing on something which is

slightly different like once you design the circuits, once you fabricate the circuits in the

form of chips, there can be some errors in design, there can be some defects, which can

occur during the implementation. So, we need to test our circuits, how to test, what are

the different ways of testing these are a few things we shall be discussing during the next

set of lectures.

Thank you.

