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So, we continue with our discussion on Asynchronous Sequential Circuits and Hazards.

So, in our last lecture we had some discussion about the different kinds of hazards, and

particularly the; I say hazards we saw how to avoid that with respect to Karnaugh map.

So, we continue with the discussion in this  lecture.  This is  Asynchronous Sequential

Circuits part II.
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 Now here we start by talking about multiple input change kind of situations, and how

such hazards can be handled. Now one thing let me tell you here, when multiple inputs

are changing then in addition to logic hazards you can also have function hazards. For

that mean suppose I have realized a function, there are some inputs, and more than inputs

can change.

Now, when more than in one input can change, the order in which the inputs will finally,

change will depend on the delays, their variations. So, there can be multiple scenarios.

So, if you look at the function at the functional level. At the functional level when this

multiple inputs are changing, you can have this function changes occurring as a hazard,



with respect to the function. So, even if you forget about the delays, if the input changes

are not happening simultaneously, such kind of hazard situations can occur right. Like in

this  diagram I have shown here,  in  this  diagram have shown that  for multiple  input

changes there can be, there can be a hazard scenario. Now, we talk about a method for

avoiding hazards in such kind of an MIC scenario when multiple inputs are changing at

the same time.
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Let us see, several inputs can change values monotonically. Monotonically means they

do not change more than once, at most once, but they may change one after the other.

Because, of this as I have just now said, the function value may change more than once

which may lead to a function hazard. Like, here in this Karnaugh map I am showing a 4

variable function, the true mean terms are shown. And, some of the changes are shown

here you see in this realization; there are some cubes, and then implementations. You see

here we have say, the value of x is changing from 0 to 1.

The value of z is change or is also changing from 0 to 1. So, 2 inputs are changing so, the

transitions are shown. Now here again if you look into the unequal delays of the gates;

so, I suggest you can work out that under what scenario it can happen. There can be a

glitch occurring in the output, which is a static 1 logic hazard. But in this case there will

be no function hazard. Function hazard will occur in case of this dotted line. If you show,



but here we are not showing here we are only showing static 1 logic hazard, where it was

1 remains 1, but in between there is a glitch, right.
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So,  how  to  avoid  such  static  one  logic  hazard?  Here  in  this  Karnaugh  map  it  is

represented by this arrow this change. So, both x and z are changing from 0 to 1, right.

So, what we do just like this single input change case. So, you should avoid any product

term that contains both x i and x i bar as the inputs. This is the trivial case I told earlier,

right. So, what we do here is that, we cover the solid arrow by a cube to get rid of the

hazard.
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You see here we have used a cube like this. This is an addition cube we have added. And

what does this cube indicate? Indicates w y so this last gate. So, if you add this one

additional gate, in the earlier case there was a static 1 hazard coming. You see, now there

will be clean output coming no glitch, right.

So, for static 1 hazard this kind of a thing will come, but for static 0 hazard you need not

have to worry, just like in the single input change case, because static 0 hazard will occur

only for this hypothetical scenario; which normally you will never do fine.
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Now, talking about dynamic hazards in multiple input changes, here again we show a

function in Karnaugh map, and you show this arrow. This arrow corresponds to this

transition. It was in 1 1 1 0, this was 1 1 1 0. The input is changing to 0 1 0 1, this one is

0 1 0 1. Now such a dynamic transition will be hazard free, there are certain conditions to

satisfy necessary conditions.

See the function was on because this was not a true mean term. So, if you make this

transition so, for 1 1 1 0 it should be 0. So, you see you look at the sub transitions, you

would have to  ensure that  all  these sub transitions  are  hazard free.  You look at  this

implementation, here you have a transition w going from 1 to 0. You have a transition z

going from 0 to 1. You see w and z both are changing here, right. Now, for this, we look

at the sub transitions; as I said to go from 1 1 1 0 to 0 1 0 1. So, you can have 1 1 1 0 to 1

1 0 1; like again let us see from 1 1 11 0 you can go to 1 1 1 1. 

Then you can go to this 0 1 1, this is one possibility. Or you can go to 0 1 1 0, 0 1 1 0,

then  0  1  0  1,  one  input  changing  at  a  time.  So,  there  are  2  possible  intermediate

temporary  states  you can go through.  Those will  be the sub transitions  I  am talking

about. So, what we are saying is that, to make an MIC dynamic hazard free, you identify

all these sub transitions; like, here I have identified the sub transitions, I said that one sub

transition can be this, another sub transition can be this. It leads to a temporary state, and

all these sub transitions must be hazard free separately. They must correspond to required

cubes. So, if you ensure this, then your implementation will be dynamic hazard free.



(Refer Slide Time: 09:07)

Like as I had said this 1 1 1 1 0 to 0 1 0 1, that makes 2 different transitions, this is

sometimes called illegal intersection. And illegal intersection you avoid by just said by

looking at the sub transitions, and just adding additional cubes; like I will show in an

example to easier.
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So, here as you can see, here you have added the cubes. This is, this was your original

implementation; which was resulting in a dynamic hazard in the output ok. Now here

what  I  am  doing?  Instead  of  this  w  z,  here  I  have  modified  this.  So,  with  this



modification, you see in the output I am having a clean transition. So, the idea is this you

must  prevent  some  of  the  transitions  from  happening,  if  you  can  do  this,  then  the

dynamic hazard in the output will be avoided.

Well, I am not going into too much detail of this, just trying to give you an basic idea;

that this is how it is done, but one thing I think you are appreciating, now that design of

asynchronous circuits making them hazard free is much more complicated. You will have

to look at all possible scenarios for hazards, and then you will have to add additional

gates. You see, I am looking at Karnaugh maps here. But think of larger functions, how

to handle larger functions? Very difficult, right?
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So, that is the trouble here. So, to summarize for a multiple input change transition, if we

have a 1 to 1 transition so, the q must be completely covered by a product term as we had

said, 0 to 0 transition in the practical case will never happen. So, forget it, but for one to

0 or 0 to 1 transitions, this is the last example you took. We have to ensure that every

product term, that intersects with the transition must also contains it starting for the first

case and ending for the second case points. Then such hazards can be avoided.
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So, to obtain a hazard free implementation of a function f, let us say the hazard free

implementation we call H, the condition is that each required cube, required cube must

be contained in some of the implicants of this hazard free implementation. No implicant

of  H must  illegally  intersect  the  dynamic  transitions.  Such  an  implicant  is  called  a

dynamic hazard free implicant; that which does not illegally intersect, and in short I call

it as dhf implicant, dynamic hazard free implicant. A dhf prime implicant just like the

definition of a prime implicant is a dhf implicant,  not properly contained within any

other larger dhf implicant, ok.

So, here we require that we make use of dhf prime implicants only, and we need to cover

all the required cubes; which is quite similar to Quine-McCuskey that tabular method of

minimization. So, we are giving one example to just illustrate the idea, again not going

into too much detail ok.
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So, let us take an example here. Suppose, we have a function here where the true mean

terms are shown and also; the required cubes are shown the required cubes are all shown

here. And from the required cubes, you identify the privileged cubes; like, there was a

transition, you include this transition also in the cube we make it a larger cube.

Then there was a transition here, a transition here, you make everything included, this

transition  can be smaller, but to  include  everything,  you make it  itself  a  large cube,

include all transition inside it. And this last transition was already inside it. So, there is

no problem, these are the privileged cubes. And the prime implicants with no illegal

intersections, you can also compute the prime implicants from the original true mean

terms. You see these are the prime implicants which are shown 3 of them, they are no

illegal intersections with these transitions as per the definition.

Now, if you look at a cover of this, the prime implicant x z has an illegal intersection,

what is x z? X z is this and z is this is x z. This x z has an illegal intersection with one of

the privileged cubes; such illegal intersections are not allowed, right. So, if we have such

an  illegal  intersection,  what  you  do?  You  reduce  the  size  of  this  cube,  such  illegal

intersections are not allowed, this x z you make it x y or z this so that this intersection

with privileged cube is not there anymore. This is the basic idea, ok.
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Now once you do this, then you have the dhf prime implicants, there are 4 here, you can

check w y bar w y x y z bar; 5 in fact, w bar y z and w bar x bar y. And these are the

coverings, these are the cubes, and these implicants are covered like this.

Now, you see all of them are essential, in these columns all of these check marks are

single.  So,  all  these product terms must be there in the hazard free sum of products

implementation. So, all this product terms w, this is w, you say this large one was w. This

w was this. This was w right. Then y z, y z was this one. This one was y z, x bar y was, x

bar and y this, this was x bar y. And finally, x y bar z, x y bar z is the one which you have

added separately, this one right, this one. These are the cubes and you need to include all

of  them.  If  you  implement  it  like  this,  this  will  be  a  hazard  free  realization  this  is

ensured.
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So  and  there  is  another  thing  this  is  something  called  hazard  non  increasing

transformations. Like, suppose you have a 2 level hazard free realization. There are some

rules Boolean algebra or switching algebra rules, if you apply them, you can convert this

2  level  realization  to  multi-level  realization  with  the  guarantee  that  the  multi-level

realization will also be hazard free.

Now without any proof, I am just mentioning some of the transformations that can be

used.  First  one  is  the  Associative  law, x  plus  y  z  is  x  plus  y,  and  also  it  is  dual.

DeMorgan’s theorem you can apply DeMorgan’s theorem and it is dual. Distributive law

x y plus x z you can take common. Absorption law x plus x x y equal to x and you can

also use this law x plus x bar y equal to x plus y. And additionally you can insert NOT

gates at the primary inputs and circuit outputs if you want. They will all ensure that if

your original circuit was hazard free, and if we apply this rules it will remain hazard free.
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Let us take an example, suppose I have a function; which was implemented in some of

products terms like this, there are 5 product terms, and these are the 5 AND gates, they

are implementing the product terms. And this implementation is free from the dynamic

hazard 1 1 1 0 to 0 1 0 1. This is same example I took earlier. So, in the output there will

be a clean transition. Now I am saying that well, I want a multi-level realization, the

objective may be to use less number of gates. So, I can take do some factoring, I can use

the distributive law, I can apply distributive law, I can take y common from 1 2 these 3

terms, and I can write it like this.

So, I can use an OR gate in the first level to implement this say this sum term, then end it

with y. Then other 2 terms remain as it is. So, what the rule says, that if I apply this rules,

and I modify this realization in to a multi-level realization, this will also be guaranteed to

be  free from the  dynamic  hazard.  These are  some circuit  design  techniques  or  rules

available  to  the  designer.  So,  once  hazard  free  realization  is  obtained,  this  can  be

extended or reused for multi-level circuits, fine.

So,  with  this  we  come  to  the  end  of  our  discussion  on  hazards  and  asynchronous

sequential circuits. So, again I am repeating, I have not gone into very much detail of

this, I have not taken too many examples. Just try to give you a flavor of the problem.

Design of asynchronous circuits making a circuit hazard free is quite complicated.



Just using Karnaugh map I have given you some techniques, but again Karnaugh map

can  be  used  only  for  up  to  4  5  or  6  variables.  What  happens  when the  number  of

variables are more? The problem is really difficult. So, the application of a synchronous

circuits are rather limited; even though there are some interesting benefits like higher

speeds,  lower  power  consumption  and  so  on,  but  there  are  some  genuine  design

problems.  So,  we shall  be  talking  about  a  higher  level  sequential  circuit  description

called ASM in our next lecture; which is also quite useful in designing complex or higher

level sequential systems.

Thank you.


