
Switching Circuits and Logic Design
Prof. Indranil Sengupta

Department of Computer Science and Engineering
Indian Institute of Technology, Kharagpur

Lecture - 52
Asynchronous Sequential Circuits (Part I)

So, in this lecture, we start our discussion on Asynchronous Sequential Circuits. You see

the kind of sequential circuits that we have discussed so far is basically synchronous in

nature. What is meant by synchronous? There is a clock; all operations in the circuit are

carried out in synchronism with the clock. When I say in synchronism, it means that

there are flip flops which store the state of the circuit, the machine and with the clock

this state changes occur in synchronism. But in an asynchronous circuit, there is no

concept of flip flops or a clock. Everything happens with respect to the delays of the

circuit element gates etcetera, right.

So, naturally speaking, if we have this kind of a scenario, there is no clock to

synchronize, the design of such circuits is much more difficult in general. Let us look at

some of the aspects of asynchronous sequential circuits, fine.

(Refer Slide Time: 01:31)

So, as I have said the asynchronous circuits in general, they do not rely on a clock. What

do they rely on? They exploit the delays of the gates and other circuit element. Let us

take an example. Well, one asynchronous circuit element you have already seen without

well explicitly knowing about it. Well, you think of a one-bit latch. A one bit latch you

can implement using cross coupled NAND gates or cross coupled NOR gates, both way

you can implement, well.

While we are discussing flip flops, we saw this kind of one-bit latch designs. Now, you

see this circuit I means in itself is a sequential circuit, because it can store some data. So,

once I store some data 0 and 1, so, as long as I am applying 1 1 here, it remembers this

value. Because 1 and 1 comes 1 1 is 0, it remains 0, 0 and 1, it is 1; it remains 1. So, it

can memorize something which means it is a sequential circuit. But there are no flip

flops, only gates. The way this 0 and 1 are remembered is based on the delay of these

gates. So, after some delay this is computed again 1 is generated, after some delays this 0

is generated. So, this is a classic example of an asynchronous circuit where operation is

determined by the delays of the circuit element here gates. Let us move on. But as it said

design of asynchronous circuit is difficult.

(Refer Slide Time: 03:43)

So, in general when we design large systems, they are synchronous in nature. But

sometimes what you do? As part of a large systems smaller subsystems can be

asynchronous. Just like in a flip flop, this cross coupled latches were there. The reason is

that in general asynchronous circuits run faster because they do not have to wait for the

clock to come. So, whenever the input changes depending on the gate delays, the output

can be immediately computed, this is what is done..

So, if we have a large subsystem like this as I said certain smaller subsystems can be

made to operate asynchronously, right. And if you look at the general structure of an

asynchronous circuit, there are 2 differences you will find in general. There are delay

elements in place of the flip flops.

So, we will come to this and the combination of the signals on the primary input and the

delay outputs; just like in a synchronous sequential circuit, the flip flops determine the

state, but here states of the primary inputs, as well as the delay outputs determine the

state. This is called total state.

(Refer Slide Time: 05:13)

Let us look into this, let us look at a structure diagram first, like this. This diagram you

see on the left, this is very much similar to what we have seen for a synchronous

sequential circuit. But the difference is that, in place of this delay elements you see out

here there you had flip flops and the flip flops were triggered by a common clock signal.

We said in synchronous circuits that whatever you are storing in the flip flops that

determine the state of my machine.

But for an asynchronous circuit, because we do not have any separate flip flops.

Everything is determined by the gates. This delays that we are talking about here, this

delay can be a NAND gate, let us say delay is just a NAND gate a gate. These inputs are

coming, the inputs are also going into some gate, right. So, there are such delay elements

everywhere in the circuit. So, when you talk about the total state I talked about, so, it is

not only the primary inputs, but also the output of the delay elements. The total inputs

that are being applied to the combination circuit that determines the state of the system.

Now, there are a few terminologies let us look at.

(Refer Slide Time: 06:53)

There is something called input state. Let us say there are l input variables X 1, X 2 to X

l. So, there can be 2 to the power l possible combinations. They determine something

called input state. So, some input is applied to a combination circuit. Then you have

some internal state which is sometimes also referred to as secondary state. This refers to

the combination of the outputs of the delay elements, the small y 1 to small y k. There

are k delay elements here, I am showing schematically. So, there can be 2 to the power k

such internal states. And total states when you talk about, it will be 2 to the power l

multiplied by 2 to the power k; 2 to the power l plus k..

Now, this y 1 to y k is sometimes also called secondary or internal variables. And the

signals that are fed to the input of this delay element let us say gates as an example I

said. These are referred to by capital Y 1 to capital Y k. These are referred to as

excitation variables right ok. Now, the point to note here is that, you see for an

asynchronous sequential circuit, there are no clocks. There is no signal coming from

outside that tells you when this Y 1 will be copied to small y 1.

(Refer Slide Time: 08:35)

For a synchronous circuit the clock did that. But here this will happen after the delay of

the gate, I showed here a gate, let us take that same example. After this gate delay this

will happen. So, when some input is applied the circuit will go through some transition

region some temporary states before they get stabilized into y 1 to y k. There is a concept

of stable state that comes into the picture here, ok.

(Refer Slide Time: 09:13)

So, let us go into the definition. We define something called stable state. For some given

input combinations, we say that this circuit in a is in a stable state when this capital Y’s

are all copied to the small y’s for all the secondary state variables. Because you see the

delay elements, each of the delay elements the input was capital Y i, the output was small

y i..

So, it says that when all these outputs that you are computing based on a given input,

they have been moved to y i, you call that the circuit is now in a stable state. But

temporarily when there is a change in the input, the excitation variables, excitation

variable means this capital of Yi’s. They change, but those changes have not yet been

reflected in small y i because there is a delay here that we refer to as an unstable state

because the circuit may go through an unstable state before stabilizing..

And the next point is, when this capital Yi’s are copied into y i we say that we have

reached the next stable state. So, basically transitions take place from one stable state to

another whenever the input changes. In a synchronous sequential circuit, state changes

occur in synchronism with the clock. But in an asynchronous circuit, whenever the inputs

change, the state changes will occur. For example, you think of that one bit latch. So,

whenever the input I am applying 0 1 or 1 0 who’s only then the output of the latch will

change. So, when you apply 1 1 that is the stable state; no change, right.

(Refer Slide Time: 11:45)

Such an asynchronous circuit has something called a fundamental mode of operation that

you refer to about. So, in the fundamental mode of operation what we assume is that

when we have made some changes in the input variable, we must be very careful. No

other changes in the input values are permissible before the circuit enters a stable state.

Because here there is no concept of clock everything happens in synchronism with the

delays or depending on the delays of the gates..

So, whenever there is a change in the input, you should allow for the circuit to stabilize

before you apply the next input. So, you should not apply or change the inputs before the

circuits have stabilized, right. And there can be 2 different kinds of changes that you can

talk about, that one input changing at a time. This is called Single Input Change or SIC in

short or in general you can have Multiple Input Change or MIC. These are the 2

fundamental modes of operation we talked about.

(Refer Slide Time: 13:07)

Now in asynchronous circuit, the most important thing that we talked about that you

need to worry about is something called hazard. Say, hazards are also sometimes called

glitches. You say let me just explain with the help of a general things. Suppose I have a

circuit, I have a circuit, there are some inputs. So, I apply some input I 1, I change it to

some other input I 2. Suppose, there is a output. For I 1, the output is supposed to be 0,

for I 2 also the output is supposed to be 0. So, it is supposed to be a 0 to 0 transition

means no change.

But actually because of the delays of the gates what you may see that the output is

temporarily going into 1, this is a temporary state before stabilizing to 0. Or if it is 1 to ,

it was 1 remains 1, it may be temporarily going to 0 like this. This is what is called glitch

and this whatever I mentioned here this is sometimes also referred to as static hazard..

Let us take another example, where the input was 0, let us suppose it is going to 1; for I 1

it is 0, I 2 it is 1. But instead of making a clean transition like this, it may so happen

because of the delays that it makes a temporary transitions like this before going to 1.

Similarly, for 1 to 0 instead of making a clean transition, it makes transition like this.

These are also glitches; this is called dynamic hazard.

So, in sequential in this kind of asynchronous circuit design, we need to worry about

these hazards because the reason is that if the output of a circuit is going to the input of

another circuit. Suppose, I have a circuit here C 1, it is going to the input of another

circuit C 2. Now, if there is a glitch like this here because of this glitch this C 2 can start

malfunctioning and the output may be wrong, ok. So, it is always good to avoid such

hazards when you are designing asynchronous circuits. There are 2 types of hazards we

normally talk about.

(Refer Slide Time: 16:03)

So, one is the example I talk I gave. This is called logic hazard. They are caused by

changes in the circuit signal. Because of the delays in the gates, the changes will take

some time they are non-instantaneous.

And in general there can be function hazards which do not that much depend on the

delay of the gates, but they depend on the functional specification themselves. But

hazards in general as I said can result in erroneous behavior; the glitches may be fed to

some other circuit that can lead to errors, right, fine.

(Refer Slide Time: 16:45)

Let us now take an example. Let us look into the design of single input change SIC

hazard free circuit. Let us take an example, this function T in sum up products sum of

min terms representation; 2, 3, 5, 7. Now in a Karnaugh map, the 4 min terms are shown

here; 2, 3, 5 and 7. No, these are not exactly 2, 3, 5, 7; anyway 2 is 010, this is 2, this is

3, 5 is this, ok. This is 5, this is a 7 ok, alright.

Now, suppose I minimize this function like this, the 2 cubes are shown by solid lines and

the minimized form of the expression is this. So, I can implement this like this, the first

get implements x bar y. I feed x bar in the first input y here. The second input I apply x

and z. There is OR. Now let us suppose, let us take a scenario, that I have applied y equal

to 1 z equal to 1. This is fixed and x was 0 and I make a single input change, I make x

equal to 1. So, when I make x equal to 0 to 1; that means, x changes from 0 to 1 and x

bar changes from1 to 0. Now, you see the delay of these 2 gates can be different, right.

Suppose, delay of gate 2 is more than G 1, so, this transition occurs first. G 1 output

becomes 0 first, but you see this is at AND gate this is delayed. So, the output will

become 1 after some delay. So, there will be a small time where this G 2 will be 1 then it

will become 0. So, there is will be a small period when both G 1 and G 2 will be 0 and 0.

That will result in this static hazard as I have shown here. This will happen if the delay of

G 2 is greater than delay of G 1. I suggest you draw the timing diagram and verify that a

glitch like this actually happens right.

 (Refer Slide Time: 20:01)

Now, coming back to this Karnaugh map, this glitch happens because we are changing a

single variable; here it is x and there are 2 adjacent combinations we can identify x bar y

z and x y z. You see looking at the cube, you look at these 2 1, you look at this. You look

at this these 2 correspond to x bar y z and x y z. In the 2 cubes there is one adjacent cube.

And whenever this X changes, temporarily you make a change this arrow is shown this

temporary transition is taking place..

Now, in order to avoid this hazard, this kind of a glitch, what you do? You look at this

kind of adjacent cubes and you see that well, there are 2 adjacent cubes, you also include

this cube in your implementation. Well, this may not be minimal, you are adding one

more gate alright, but you are avoiding hazard.

So, if you add this get this means what; y z. So, you add this third gate here. And what

you get? You can check that here even if there are delays in these gates, the output will

be a perfect one; no glitch, this is a hazard free circuit ok.

(Refer Slide Time: 21:35)

Talking about static logic hazard, as I said in the example, transition between a pair of

adjacent input combinations which correspond to identical output values in the example

it was 1, it remained 1. It may temporarily generate a spurious output value glitch. And

this occurs as I just now said with respect to Karnaugh map. When no cube in the

Karnaugh map contains both combination which was shown in the dotted way. Solution

is to cover both combination which a cube which we actually did, right. And in the final

solution, there is no hazard.

(Refer Slide Time: 22:23)

So, let us continue with the discussion. There is something called transition cube and

required cube. Let us see transition cube is defined with respect to 2 min terms m 1 and

m 2. This refers to set of all min terms that can be reached from m 1 and up to m 2. Let

us take an example..

Suppose I have 010 and 100, this is m 1 and m 2 is 100. So, I want to go from 010 to

100, but I can change only one inputs at a time. So, there can be min terms like that in

addition to 00 and 100, there can be 010, 010 is there, there can be 000 and there can be

110. You see to change 010 to 100 I can have one possibilities, 010 to I can go to 000

first, ok. Then I can go to 100 or I can start with 010. I can go to 110 first, then I can go

to 100 single input transitions.

So, I try to find out all such possible means additional min terms that will be part of the

transition cube. And required cube is a special kind of a transition cube that must be

included in some product term to get rid of static logic hazard. Static 1 means it was 1,

this is static 1.

(Refer Slide Time: 24:15)

Now here the required cube like this one I have shown, this is 011 to 101, this is 011, this

is 111. This is just an example of a required cube, ok.

(Refer Slide Time: 24:37)

And the last thing static 0 or dynamic hazard both static 0 means, you see it was 0, it

remains 0. Now, you see in a sum of products realization of a function we do not keep

track of the min terms for if the function output is 0. So, there are no gates which are

generated for this. That is why for static 0 we need not have to worry about it. Such

hazards can be avoided right. There is no cube for any product term that will lead to this

0 0, because 0 we do not have in any of the cubes, only 1’s..

Only in a very with hypothetical case, if we have a gate where I apply x i as one of the

input and also x i bar as one of the inputs, there is no reason why I should apply like this.

Only in such cases this kind of an hazard can be there, but otherwise it is not there. The

only situation is both x i and x i bar can be the input literals of one of the cubes. But

normally we do not do that, there is no reason to do that; that is why such hazards can be

avoided.

(Refer Slide Time: 25:55)

And during a 0 to 1 transition, 0 to 1 I said that there can be dynamic hazard there can be

a temporary change. Like this, this is called a dynamic 0 to 1 logic hazard and dynamic 1

to 1 also I mentioned earlier, this kind of a transition. And for single input change

scenario we can never have dynamic hazards. This is the point to note. Only when one

input changes at a time, you can only have single input static hazards..

So, with this we come to the end of this lecture. We have tried to give you a very basic

overview about the concept of hazards in asynchronous circuits and some of the simpler

kind of hazards, how they can be avoided. So, we shall be continuing our discussion in

the next lecture.

Thank you.

