
Switching Circuits and Logic Design
Prof. Indranil Sengupta

Department of Computer Science and Engineering
Indian Institute of Technology Kharagpur

Lecture - 38
Synthesis of Synchronous Sequential Circuits (Part III)

So, in the last lecture we were talking about the method of Synthesizing a Synchronous

Sequential Circuits and you have seen the first step of it, starting from the specification

how to construct the state transition diagram and state tables. Today we shall be looking

at a complete worked out example starting from the state table or state transition diagram

how we can go through the other steps and arrive at our final circuit diagram. So, this is

the third part of our lecture on Synthesis of Synchronous Sequential Circuits.

(Refer Slide Time: 00:56)

So, let us recapitulate what we are said about the synthesis of FSMs. In the last lecture

we have seen through a number of examples how we can construct the state transition

diagram and also the state table starting from the problem description.

But now the question arises from the state table what next. So once you have constructed

the state table there are a few steps that are left to be done; these I shall be illustrating

with the help of examples from this lecture onward. The first step that we shall go

through now is something called state assignment. State assignment means that you are

assigning some unique binary code to the states assign unary unique binary code to the

states.

Now the way you do state assignment can be different for example, if you have 3 states

let us say ABC, then you can just assign the binary code 0 0 0 0 1 or 1 0 let us say or you

can use something called one hot encoding, that means one of the bits in the state

representation is 1. But of course, here you require 3 state variables, there can be many

other alternatives ok, but in the examples that we shall be showing we shall be looking at

the most compact representation, say for 3 state variables 3 states, we need 2 bits or 2

state variables to represent.

Now after state assignment we will be constructing something called the transition and

output table. Now this can be constructed directly from the state table as we shall see

from this state table after state assignment we shall be going to the transition and output

table. Now once transition output table is done we will be selecting the type of memory

elements that what kind of flip flop we are choosing and accordingly we will be

constructing something called the excitation table.

Now, you recall when we had discussed the various kinds of flip flops, we talked about

the excitation requirement of the flip flop; for example, for a T flip flop if you want to go

from state 0 to state 1 you have to apply T equal to 1. So, for every pair of present state

and next state you know what exactly you have to apply to the inputs of the flip flop.

So, accordingly you create or construct something called the excitation table and from

that table you can obtain some functions one is called excitation function other is called

output functions and once you get them you can minimize them and once you have

minimized you can realize them using gates or using any other modules as you feel like.

Now let us illustrate this steps that I have mentioned through some examples.

So, the example that we take in this lecture is that of a serial adder which we have

already discussed in the last lecture. So, in the last lecture whatever we have discussed is

shown in the slide. So we have said that this is our functional depiction of the serial

adder, there are 2 serial inputs X 1 and X 2 this is the serial output Z and of course there

is clock. State transition diagram state table of course, for synthesis the steps we shall be

using the state table representation.

So, state diagram we are not looking at right now we shall be looking at state table. So,

just let us recapitulate once in the state table. So, in the state table we have the present

state specified in the first column and the next state and the output specified in the

second column for all possible values of the inputs because, here we have 2 inputs X 1

and X 2 there can be 4 different input combinations. So, capital X is the combination of

X 1 X 2, it can be 0 0 0 1 1 0 1 1. So, state table depicts the whole behavior. Now, let us

see how we can proceed with the next steps.

(Refer Slide Time: 06:12)

So, as I said first step will be the state assignment, because in this example there are 2

states, so we can use a single bit. Let us say state A may be represented by 0 and state B

can be represented by 1, well you remember this is not unique this is just one of the state

assignment we can try out. So, you can have other state assignments also you can have

the reverse 1 for A and 0 for B also fine.

Now, with this state assignment your state table becomes like this, you see this is exactly

the same as the state table. What we have done? We have replaced A by 0 and wherever

B was there we have replaced it by 1. The here everything have remains same you see

here A and B was there we replace it by 0 and 1 here also A was there here also A and B

was there here also A and B was there here also B and B was there, the rest you have not

touched.

(Refer Slide Time: 07:37)

Now just one thing you just see that in this state table every entry of the state let us say

here here every entry, so what are we specifying we are specifying 2 things, we are

specifying the next state as well as we are specifying the output separated by commas,

but for convenience let us separate these out in 2 different tables; let the NS be there in

one table and Z with there in another table. It is again not anything different, but instead

of writing them in a single table separated by commas for convenience let us separate

them out and this is called transition and output table.

You see the first part of the table is for NS second part of the table is for the output Z

exactly the same table you see the inputs the NS 0 0 0 1 0 1 1 1 you see 0 0 0 1 0 1 1 1

and the outputs 0 1 1 0 1 0 0 1 0 1 1 0 1 0 0 1. So, it is exactly the same thing right and

these this X value instead of X, I am also just writing here 0 0 0 1 1 0 1 1.

(Refer Slide Time: 08:56)

These are actually the value of X which means X 1 X 2 because, you recall the 2 inputs

of a circuits are X 1 and X 2, the 2 serial inputs that are coming those are X 1 and X 2

right.

(Refer Slide Time: 09:16)

Now, the next step is to select memory elements. Now, it is a choice we do not know

which one will be best. I can try out D flip flop T flip flop JK SR. let us start with D,

because it is a simplest kind of flip flop. So, let us select D flip flop. Now our model of

the FSM was like this, there are 2 inputs X 1 X 2 single output Z this was the next state

capital Y present state small y.

Now, when we are using D flip flop what we are actually trying to do is that here instead

of this pink box we will be using a D flip flop D and Q where in D we will be applying

some value and this Q will be generating this small y right. So, in the original table we

had the capital Y, but when we convert it into something called excitation and output

table, see this was the table which we had seen earlier transition and output table just in

last slide we had seen this.

But from this after we have selected D flip flop, now we are coming to something which

is called excitation and output table. Now excitation output table will look exactly same

as this because, in case of a D flip flop; so whatever you are applying same thing will be

coming out just like your model here so there will be no change.

So, here actually whatever you are showing here they indicate the value of D. So, instead

of Y see here Y so Y you can call as if you are applying the D value here. So, whatever is

D that you are applying here, there will be the same thing, because this capital Y

becomes small y whenever clock comes for a D flip flop same thing happens. So,

whatever you are applying to D that goes inside when the clock comes ok. So, you have

the excitation and output table like this.

(Refer Slide Time: 11:58)

Now from the excitation and output table if you just look at it just let me go back ones, if

you just look at this excitation and output table you see that what are the inputs here.

(Refer Slide Time: 12:18)

Here my inputs are on one side I have my input small y and on the other side here I have

my inputs X 1 and X 2. So, 0 0 0 1 1 0 1 1 so if you just inter change these 2 columns it

will become like a corner map right, in corner map you have 0 0 0 1 1 1 and 1 0. So, if

you just reverse it, it will be like a corner, similarly for the output part it will it will be

like a corner map ok. because you already have these you already have this, if you just

interchange the last 2 columns it will become just like a corner map and for the first part

you are actually generating the function for this small y whatever this small this actually

capital not small y capital Y and here you are actually generating Z. So, if you just work

this out the same thing I have mentioned, the corner maps will look like this, for the first

one the corner map will look like this.

So, if you try to minimize it there will be 3 cubes one like this one like this and one like

this. So, if you see there will be 3 terms, here I have shown X 1 X 2 on this side and

small y on this side and for the second part this for the output function the 1’s are like

this, you see there are no cubes possible you cannot minimize it, so this is actually the

exclusive OR functions. So, I have shown in an compact form in an exclusive OR form,

but actually but if you just want to write it in the expanded form it will be like this; this 1

will correspond to X 1 bar X 2 bar y this 1 will correspond to X 1 bar X 2 y bar OR this

1 will correspond to X 1 X 2 bar y bar OR and this 1 will correspond to X 1 X 2 and y;

this is nothing but the XOR of X 1 X 2 and y.

So, you see once you have generated this functions Y and Z, this is actually a D flip flop

you have chosen here. So, you have a as good as design the circuit because, from this

function you can directly generate the value of X because here this will be nothing but an

exclusive OR gate XOR gate X 1 X 2 and y, this will be Z and for generating Y you will

be using a circuit like this there will be 3 AND gates and an or gate this will be

generating capital Y.

(Refer Slide Time: 15:44)

So, the inputs will be X 1 X 2 X 1 y and X 2 y. So, fine generating the output Z you need

an X or function as you can either use an XOR gate or you can break it up into AND or

NOT gates and for generating the next state capital Y you need 3 and gates and an or gate

right. This is actually how you do the synthesis the basic idea is this.

(Refer Slide Time: 16:27)

Now, the same design let us try out an alternative, suppose instead of D flip flop we try

with SR flip flop right. Now if we use SR flip flop actually what we are trying to do?

Now, see earlier we had this D flip flop there are single input single output Y, but now

you see if you consider SR flip flop here, now there will be not 1 but 2 inputs SR on one

side and here the output will be Y. Now this circuit actually now will be have to be

generate both S and R because this capital Y is the FSM model but when you are

mapping this memory element to an SR flip flop, this capital Y will get split into 2 inputs

S and R right.

So, from the transition and output table when you map it to this, just see how this table is

getting constructed. Second part is identical, second part there is no change this is just

the outputs. But for the next state here the values that are shown are the values of S and

R just see it carefully. Look at this your present state was 0 next state is 0, for an SR flip

flop you recall what are the excitation function for SR flip flop, just recall for SR flip

flop what do you have to apply.

Suppose I want to go from 0 to 0, for SR flip flop I can either apply 0 0 or I can apply 0 1

which means 0 do not care, but if I want to go from 0 to 1 there is only one way 1 0. If I

want to go from 1 to 0, I have to apply 0 1, but if I want to go from 1 to 1 0 0. So, now

you see here you are going from 0 to 0, 0 to 0, 0 to 0 all 3 see you see 0 X, 0 X, 0 X, 0 to

0 is 0 X 0 to 1 0 to 1 is 1 1 0 then 1 to 0 1 to 0 ok.

Actually 1 to 0 this will be 0 1 not 1 0 1 to 0 and rest are 1 to 1, 1 to 1, 1 to 1. So, it will

be 0 0 0 0 0 0 so you see here all again you have constructed this specification for the

map from where you can minimize, see you can again minimize using corner map from

here.

(Refer Slide Time: 19:39)

Just I am showing you just 1 thing just you can rectify this error because, this 1 0 would

actually be 0 1 so we can make it correct. So, what we do? The first part of the table

which contains the pairs 2 those we split it up into S and R the first one we used for S

second one we used for R right.

So, you make that correction without this correction I am just showing you just to

illustrate what you be done. So, you just see where the ones are you put them in the k

map minimize them you will get S, you will get R and in this case you will get Z or the

output and this will be the function you can implemented. But if you want to just try to

rectify that confusion which was there just a second let us go back, so from this let us try

to construct the map from here.

(Refer Slide Time: 20:53)

Let us construct the map Y here and on this side it will be X 1, X 2. So, it will be 0 0 0 1

1 1 1 0 and 0 1, this is for S ok, let us say this for S, S is the first one first 0 1. So, 1 you

just only note down ones and 1 these 2 ones are there for S there is a there is a 1 here and

1 in there. And for R what will happen for R? For R the corner map will be the right side

there are no ones there is no 1, so R will be 0.

So, R you do not apply anything, and S there will be 2 terms there will or of these 2 and

output similarly output in the same way it will be a corner map you can just do it. I am

sorry this will be 1 will be here because it is 1 1 it will be here. So, in this way you can

just generate the functions and after you generate this functions, you can actually

minimize them and after minimization, you can realize this circuit like this, this is the

basic idea how you do it.

So, here I have just worked out just one example that of a 2 bit serial adder and at some

more examples I shall be explaining in our next lecture also. So, we come to the end of

this lecture. If you recall we have worked out the complete synthesis flow with the help

of a simple example that of a serial adder.

We had seen earlier in our last lecture how we can construct the state transition diagram

and the state table, and from the state table we looked at the various steps that you need

to do started from state assignment, transition output table, excitation table, then

minimizing using the corner maps and so on and get the final circuit. So, we shall be

working out some more examples in the next couple of lectures.

Thank you.

