
Switching Circuits And Logic Design
Prof. Indranil Sengupta

Department of Computer Science and Engineering
Indian Institute of Technology, Kharagpur

Lecture – 29
Logic Design using AND-EXOR Network

So, in this lecture, we shall be looking at some unconventional ways in which a circuit

can be designed. Normally when you talk about logic design, the kind of methods that

you talked about; we have said that we can use the different kind of gates to implement

logic AND, OR, NOT, NAND and NOR gates are functionally complete; we can use

them as well. We are also seen various ways in which the basic building blocks in design

like multiplexers, decoders, etcetera can be used to implement logic.

Now in this lecture, we shall be talking about something called AND and EXOR

network. This is not very conventional. So, we will be using AND gates and EXOR gates

to realize logic functions, let us look into this in a little more detail.

(Refer Slide Time: 01:23)

So, what we have just now mentioned is that we have already studied various methods of

logic design using basic gates and also using functional modules like the multiplexer, but

there are many applications; you think of arithmetic, addition, multiplication, this kind of

operations, well, you had looked at the hamming error correcting codes earlier. So, error

corrections; there are applications in communication decoding encoding various such

applications where we use exclusive or operations very heavily.

So, if we allow not only the basic gates, but also exclusive OR gates to be used in our

final circuit, then the size and complexity of the circuit can be reduced or great extent.

So, one classic example, if you re call is the circuit will generate the parity of a word

simple exclusive or of all the bits will generate the parity that was one example where

EXOR gates will be very efficient. Not only that; it is also very easy to test such circuits,

we shall consider this AND and EXOR kind of representation in this lecture. Now, one

thing I want to just mentioned here that I mentioned the example of a parity generator.

Let us take a very simple example. Suppose, I have a 4 bit parity generator and I use an

EXOR gate to generate it.

So, I can use a large EXOR gate or I can use a cascade of smaller gates, they are

equivalent because normally it is much easier to build smaller gates. So, you see; to

generate the parity of 4 numbers bits, I need 3 input EXOR gates, right. So, the hardware

is not that much, but now one thing I want to implement; the same thing using AND, OR

and NOR gates in a conventional way. So, what will be my hardware complexity 4 input

EXOR. So, what this function is I just to recall EXOR is nothing, but count counting or

the min terms which corresponds to the odd number of ones. So, in 4 variable function,

there will be 8 such combinations where the number of ones will be odd.

(Refer Slide Time: 04:24)

So, in an AND-OR realization, what will require will be requiring 8 AND gates; each

containing 4 inputs each and in the last stage will be requiring a large OR gate with 8

inputs and of course, in the inputs will be using some NOT gates in addition, there will

be 4 NOT gates for the 4 inputs.

So, you see will be requiring 8 4 input gates 1 8 input gates and 4 NOT gates for a

conventional AND-OR-NOT realization, but if we use EXOR, you need only 3 2 input

EXOR gates, you see, this is a classic example which shows, but EXOR gates for some

applications can be very very efficient as compared to conventional logic

implementations let us move on.

(Refer Slide Time: 05:30)

Now, because our subject or discussion in this lecture is and EXOR implementations; let

us look at 3 alternatives ways of expansion well, we already talked about Shannon’s

expansion earlier, let us look at it like in this way consider that we have an n variable

function f with variables x on to x n, they can be expanded just like Shannon

decomposition or expansion we talked about earlier with.

Respect to any of the variables well in this example, I illustrated with x 1 in 3 possible

ways, these are called positive Davio, negative Davio and our familier Shannon’s

expansion well, here we used 3 notations where f 0 indicates the cofactor of this function

f where the input variable x 1 is 0 well earlier, we express it like this f 1 0, but anyway I

am showing it only as f 0 and similar f 1 which earlier we showed as f 1 1, but this f 1

means the variable is at one and we introduce another function if 2 which is the exclusive

or of f 1 and f 0, right.

Now with this notation, the positive Davio expansion says at the function can be written

as f 0 exclusive or x 1 f 2 negative Davio says, it can be expressed as x 1 bar f 2 x or f 1

and Shannon expansion says x 1 bar f 0 EXOR x 1 f 1. Now recall one thing, earlier

while talking about multiplexer realization.

When you introduce the Shannon decomposition theorem you recall we used a or here

not on EXOR, but here we are showing an EXOR well, you shall see very shortly that in

certain cases, OR AND EXOR can be equivalent this is one such case. So, I can either

right or I can write EXOR, they will mean the same thing. So, there are 3 different ways

in which I can expand the function you see one thing that if I expanded in this so far

example let us say Shannon.

(Refer Slide Time: 08:15)

So, what is this function mean this function means I will be having 2 AND gates 1 x on

bar and f 0 1 is feeding with x x sorry x 1 bar other is fed with f 0. The other and gate is x

1 f 1 x 1 and f 1 and it is EXOR of the 2. So, there is EXOR gate. So, you feed this to

this and you get the function f this is an AND EXOR kind of realization right.

(Refer Slide Time: 08:57)

Now, let us look at some of the properties of EXOR sum of which you already know

some of which may not be very apparent, but will see this see sum of the roots you

already know the first one that exclusive what is associative. So, whether you take the

EXOR of x and y and then EXOR of z or the other way around, it does not make any

difference because ultimately EXOR means whether the number of ones is odd or even if

it is odd it will be 1, if it is even it will be 0 ok.

The third one is also known commutative whether you take x EXOR y or y EXOR x, it

means the something. Now if you take the EXOR of any function with respect to itself or

any variable with respect itself it will become 0. This is important like when you have an

expression like this, let us say x y z EXOR x y z, it cancels each other this is 0. So, this x

need not be a variable only, it can be a function also any function EXOR with itself

means 0 and anything EXOR with one means the compliment not right. Now let us look

at the other 2 rules which may not be very familiar to you.

(Refer Slide Time: 10:30)

This one this is some kind of distributive law and an EXOR x and y x or z is equal to

this, let us take the right hand side xy EXOR x z. So, let us expand it. So, what is EXOR

x y and x z bar or x y bar and x z, this is an EXOR. So, if you apply Demorgan’s law x

bar or z bar or x bar or y bar x z. Now if you multiply out x y x bar will be 0 x x bar cuts

out x y z bar and x bar and x z cuts out x bar x and y bar x z if you take x common y z

bar or y bar z which is nothing, but the exclusive or of y and z ok, it will be left hand

side.

So, you see that EXOR and they distribute over each other. So, as if you have an and

EXOR, you can multiply as if x y EXOR x z, you can do this, right. Now let us look at

another interesting rule, it says this x and y, well again, x y need not be variables, they

can be any 2 functions.

(Refer Slide Time: 12:18)

If the end of this 2 is 0, then OR and-EXOR, I can replace their equivalent, well, why it

is so? You see; if you look at the truth table of a function; let us say this xy or x or y.

So, if I say EXOR y what is the truth table, this odd says truth table is this, but it

addition, I am saying that my x y equal to 0, this condition is true. So, x y 0 means what

the end the end of x and y is 0. So, AND means what? X y is the AND so, I am making

this is as 0. So, I am left with 0 and 1 0 which is nothing, but x EXOR y so, they are

same. So, in any just example, if you see, if you look at the previous example and let us

go back to the previous slide, this x bar f 0 x 1 f 1, you see that is x 1 bar and x 1, here if

you take and of these 2, iit is 0.

Therefore, this EXOR-AND-OR are equivalent, you can replace EXOR with OR, right.

This is the basic idea. So, you remember these rules.

(Refer Slide Time: 14:07)

Fine, now let us come to something called Reed Muller expansion. Reed Muller

expansion is a classic way of implementing a switching expression using AND and

EXOR gates. This was proposed long back, there are many applications of Reed Muller

expansion and people have been using it, since, many years many decades. The idea of

classic Reed Muller expansion is that, we use positive Davio expansion, let us say to

expand a given function repeatedly recursively.

So, if you do that we shall take some examples, later, if we do that then we can get this

function f written as EXOR of a number of n terms the may be all possible very; let us

say, let us take a very specific example, suppose I have 3 variables x 1, x 2, x 3, this is a

general expression that is why this looks complicated for 3 variables. This functional

look like this is a 0 plus a 1 x 1 plus a 2 x 2 plus a 3 x 3 not plus using EXOR all EXOR,

EXOR a 1 2 x 1 x 2, a 1 3 x 1 x 3, a 2 3 x 2 x 3 and EXOR a 1 2 3 x 1 x 2 x 3. So, you

see all possible values of x 1 x 2 x 3 and their combinations and terms are there is only x

1 x 2 x 3 pairs, 2 of them taken together 3 of them taken together and none of them.

So, there are 2 to the power 3; 8 such and terms product terms they are all EXOR

together and this a i is this a coefficients, they are either 0 or 1, they may be present in

expansion or they may not be present this is actually what is referred to as Positive-

Polarity Reed-Mullar expression, Positive-Polarity means all the variables appeared in un

complimented forms ok. This is the basic idea.

(Refer Slide Time: 16:59)

So, let us take an example here, suppose, I have a function like this, I want to express

this in the Positive-Polarity form. So, what I do? Well, here I already know the EXOR

rules. We saw in the last slide, this x 1 bar; we can write as x 1 exclusive or 1 x 2 bar, we

can write like this x 3 bar, we can write like this. Well, why we are writing like this

because its bar; we are eliminating; we want to use Positive-Polarity only.

So, this x 1 bar; we have made it x 1 because x or 1 means compliment. So, we have

eliminated the bars like this and if you put it here it will be like this and you know that

this EXOR is distributive over and you on multiplying. So, I have skipped a step you can

do it like this.

The first 2 for example, if you multiply by x 1; so, it will be x 1 x 2 x 1 and 1 EXOR x x

1 1 and x 2 EXOR x 2 1 and 1 EXOR 1, this will be the first term and x 3 and 1 remains.

Now if you multiply again like this, you will get you say x 1 x 2 multiply x 3, you get

this x 1 x 2 and 1, you get this, then x 1 and x 3, you get this x 1 and 1, you get this x 2

and x 3, you get this x 2 and 1, you get this and finally, 1 and x 3; you get this 1 and 1,

you get this, right. So, you see for this function ultimately, whatever you get this is your

Positive-Polarity Reed-Mullar form all variables are uncomplimented, right ok.

(Refer Slide Time: 19:05)

Now, the point is that sometimes, you may not required all in un complimented form. So,

you can have or combination of un complimented and complimented form, but you can

in force that some variable say x 1 appear in only one form of complementation, let x 1

will always be un complimented x 2 will always be complimented x 3 will be un

complimented like that if you have that kind of a restriction in place, then you can have

something called fixed polarity Reed-Mullar expansion.

Here, we can use a combination of positive Davio and negative Davio kind of expansions

where as I said each variable will appear in either complimented or un complimented

form, but not both ok. Let us take an example, take a function like this where there is a

term x 1, x 2, x 3, x 4 and there is a term x 1 bar, x 2 bar, x 3 bar, x 4 bar, let us try to

arrive at a mixed kind of a Reed-Mullar expansion. For this, the first observation is based

on one of the rules, you see this x 1 x 2 x 3 x 4 this term and the other one; x 1 bar x 2

bar x 3 bar x 4 bar, if you take the and of this 2 because there is variable and compliment,

they will become 0, this is 0.

So, according to our previous rule, if x y is 0, then you can write x plus y and x EXOR y

same ok. So, the original function was or I can replace it by EXOR because their AND is

0 ok, the product terms are disjoint.

(Refer Slide Time: 21:21)

Now, let us look at this steps of expansion. Now what we are doing? We are applying or

we are one thing x 1 x 2 to be in the un complimented form and x 3 and x 4 in the

complimented form. So, what we do? So, for the first time because x 1 x 2 are already un

complimented, we leave them as it is, but x 3 x 4, you want in complimented form. So, x

3 you replaced by this, we bring in a bar and x 4, we do this, we bring in a bar x 4 bar.

Similarly for the other side, x 3 x 4 bar are already bar.

So, we leave them as it is, but x 1 we make it un complimented x 2, we make it un

complimented, then using the distributive law, we go on multiplying x 3 plus this and

this if you multiply, you get this, if you multiply this and this; you get this. Now straight

away, you multiply this with this, you finally, get x 1 x 2 x 3 bar x 1 x 2 x 4 bar like this,

you see you get you get a Reed-Mullar expansion where x 1 is un complimented,

everywhere x 2 is un complimented, x 3 is always complimented, x 4 is always

complimented. So, you have a Fixed Polarity Reed-Mullar expansion where the

complementation can be can be either complimented or un complemented, but not both

ok, this is what you can have.

(Refer Slide Time: 23:11)

Now, let us talk about 2 level and EXOR realization. So, the function that we just now

just arrived at the function is like this. So, in order to implement it what we need; so,

how many product terms are there? 1, 2, 3, 4, 5, 6. So, we will be needing 6 AND gates,

first AND gate will be having 2 inputs second AND gate will be having 3 inputs, third

one also 3, forth one 2, this is 3, and this is 3 and I have to take the EXOR of all of them

see, there are 1, 2, 3, 4, 5, 6.

So, one way is to have a large EXOR gate with 6 inputs and connect the output of this

AND gates to them directly, but as I said, the large EXOR gate can be difficult to

manufacture. So, what we will just another thing is that for the input stages, you may

need some complimenting the x 3 x 4, you will be needing 2 NOT gates to compliment x

3 and x 4. So, you need 2 2 input AND gates and 4 3 input AND gates and 1 6 input

EXOR gate. Now what I am saying is that in general, you see this is a general expression

for some function, you may also have a term 1 EXOR something, right.

So, general circuit will look like this. So, you can have a chain of 2 input EXOR gates,

this is an alternate way of implementing and here, well for this case, you can set it 0, but

if it 1, then we will be put it to 1. So, the advantages that you can use small size EXOR

gates, but the drawback is that the delay will be more the total delay will be a cascade of

the 6 OR gates, right.

(Refer Slide Time: 25:59)

This is what I mentioning that instead of a single logic circuits, we can have a cascade of

such gates also right in general, right.

(Refer Slide Time: 26:13)

So, let us work out a complete example here. Suppose, you we want to find the Reed

Muller expansion for this function, there are 4 min true min terms 0 3 5 6. So, if you

carry out minimization, you will see that your minimize form of the function will be this,

there are 4 product.

Now one thing you observe that there is between each pair of product term, if you take

and it will be 0. So, this or can be replaced by EXOR that is the idea. So, the first thing is

that because they are disjoint this product terms there is nothing in common, but let us

say if you have if you had 2 product terms a b or b c, then you could not have done that

because a b and b c are something in common a b and b c is not 0, but if you had a b plus

b bar c, then you can replace plus by EXOR, right. So, here first step is you replace this

or by EXORs.

(Refer Slide Time: 27:35)

Then, suppose I want a positive regular form. So, all variables un complemented. So,

wherever that is not; so, x 1 bar, you replace it by this x 2 bar, I replace by this x 3 bar.

Similarly, here x 1 bar x 2 bar and here x 3 bar, then I go on multiplying like in the

method, I mentioned earlier, we simply multiply this part, this part is you straight away

multiply this red first term gets like this the second term blue, it becomes like this x 2 x 3

or x 1 x 2 x 3, the green term become at this brown term becomes this x 1 x 3 and x 1 x 2

x 3 and EXOR of so many terms. So, now, you can becomes x 1 x 2 and x 1 x 2 x 3 now

you see I have an EXOR of so many terms. So, now, you can apply that rule that any

function source of function EXOR that same sum function is 0.

So, I can cancel them out. So, let us see which are the terms that are getting canceled out,

you say I can get 1 x 1 x 2 x 3 here and 1 x 1 x 2 x 3 here they were canceled out. So,

one x 1 x 2 x 3 here and one here they get canceled out this x 1 x 2 and this x 1 x 2

cancels out this x 2 x 3 x 2 x 3 cancels out and finally, x 1 x 3 and x 1 x 3 gets canceled

out. So, most of the terms are getting canceled out and what you finally, have his only

one EXOR x or EXOR x 2 EXOR x 3. So, the and EXOR you do not need any AND

gates for this example you need only x or it is a very simple form of an expansion.

So, with this we come to the end of this lecture you see what we discussed in this lecture

are some as I said unconventional ways in which you can represent some functions using

and an EXOR gates which show how we can realize any arbitrary function using Reed-

Mullar means expression form either in un complemented variables forms are in so

called fixed polarity form, some variables are complimented some variables are un

complemented.

So, the advantages is that for some functions that can lead to very small realizations and

also later on, we will see that when you design a circuit we also may want to test whether

the circuit is working correctly or not so far, this kind of Reed-Mullar circuits testing

becomes very easy, but this we shall be discussing later.

Thank you.

	Switching Circuits And Logic Design
	Prof. Indranil Sengupta
	Department of Computer Science and Engineering
	Indian Institute of Technology, Kharagpur
	Lecture – 29
	Logic Design using AND-EXOR Network

