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Binary Decision Diagrams (Part II)

So, we continue with our discussion on Binary Decision Diagram. If you recall in our

last lecture we said what a Binary Decision Diagram is we also talked about something

called ordered BDD ordered binary decision diagram, where the order in which we are

expanding variable that is fixed from, or with respect to any path from the route that you

follow that. 

Let us say if I use an order a b c so, will be expanding along all the paths in that same

order  a b and c.  Now, in this  next  lecture on binary decision diagrams,  we shall  be

talking about some rules using which we can reduce the size of the BDD, 
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Because as I said the size of the BDD as such is exponential  in nature,  because the

number of leaf nodes the terminal nodes that will be equal to 2 to the power n the same

size as the output of the truth table.

So, we have to do something to reduce the size, because exponential is a really large

number. Suppose I have a 20 variable function, how much is 2 to the power 20? 2 to the



power 20 is 1 million; for 30 variable function how much is 2 to the power 30? It is 1

billion. So, that number grows very rapidly with n all right, today we talk about functions

with  100  variables  and  even  more.  So,  we  just  cannot  represent  a  binary  decision

diagram in a conventional way we needs some rules for reduction.

Let us see so, reduced order BDD that is what we call this is referred to as ROBDD, well

we know that  what  is  a  binary  decision  diagram,  if  the  ordering  of  the  variables  is

constant along all the paths we called it as ordered BDD, now we apply some rules to

reduce  the size so,  what  we get  is  reduced ordered BDD. So,  we have this  reduced

ordered BDD, where two reduction rules are applied systematically, these are the two

rules we shall be illustrating.

We  shall  be  merging  any  isomorphic  sub  graphs  what  is  isomorphic  sub  graphs,

isomorphic sub graphs are two graphs which are identical in natures like, let me take an

example suppose I have a part of my BDD which looks like this, there is another part of

my  BDD  where  also  the  same  structure  is  formed.  So,  I  say  that  these  two  are

isomorphic, if I find two such sub graphs which are identical isomorphic we can merge

them into one.

This is one rule and we can eliminate any node whose two children are isomorphic. So,

what I mean is that suppose I have a decision on b at  a higher level so, one of it is

children is pointing here other is pointing here. So, what is it says that both are pointing

to basically the same thing right this to indicate the same thing. So, there is no need for

using b, so if b is 0 then also will be doing this, if b is 1 then also will be doing this. So,

we can simply eliminate b from this graph this is so, called elimination rule we shall be

seeing in this more detail.

Now, the interesting thing about ROBDD is that is that it is a canonical form. Now, you

recall for you we talked about some of product and product of some representation, we

talked about canonical representations canonical is some sort of unique representation,

this reduced order binary decision diagram with respect of particular variable ordering is

canonical, which means there exists a single unique ROBDD presentation ok.

Now, because there is exactly one ROBDD for a given function, this is a very useful

property  using  which  we  can  use  it  in  many  applications,  one  such  application  is

functional equivalence checking like.
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We have two functions f 1 and f 2 and we are not very sure whether they are the same

function or not, we want to check whether they are equivalent or not. So, what you can

do  we can  create  the  ROBDD of  the  two  functions  and,  then  check  whether  the  2

ROBDD are identical or not fine. 
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So, some properties of ROBDD as I have just now said, there are two main properties;

one is uniqueness no two distinct nodes can be labeled with the same variable name and

have seen low and high successor. Just the example that you took earlier a 0 1, the same



example let me show once more. And again a 0 and 1 we see let us say this is my node a

and this is my node b, it says that you cannot have two such nodes even we labeled with

the same variable here a and, have the same low and high success low successor is 0 in

both the cases and high successor 1 in both the cases. 

So, if you have such then you will be merging them into 1, there will be unique copy of

such structure existing. And non redundant is other one it is says no variable node can

have identical low and high successor. So, a particular node cannot have let us say both

the dotted and the solid arcs pointing to the same node in the next level, this means that a

not required irrespective of the value of a you will come to be anyway ok these are the

two main properties of ROBDD that needs to be satisfied. 
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So, this is explained diagrammatically here, first is the deduction rule where we say that

if we find isomorphic sub graphs merge them. So, two cases are shown here there can be

similar cases other similar cases also. If you find that the two sub graphs like this, two

nodes labeled with the same variable x and x same low and high successors child y z y z,

then you and you see they are coming from two different places ok.

So, then you merge them into a single node and around places from they are coming so

now, they will be to incoming input stages one from this one other from this one, but you

use is a single copy of this single copy of this. Similar this stage maybe solid this stage



maybe dotted also. So, this is other example so, if we have this thing then you can merge

this like in this way same way merge this two and two edges will be coming like this.
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So, you can have the other cases also I have not shown all like for example, one of them

can be dotted and the other can be solid. So, in that case when you merge the first one

will be dotted and this one will be solid right, or the other way around this one solid this

one dotted ok. So, you can have all such cases of merging. The other case is to remove

the redundant nodes, like I already mentioned this if you have a scenario like this.

Where there is a decision node labeled with x it says, if x equal to 0 you come here if x

equal to 1 come here, now you see this decision does not make any sense, because you

are anyway coming to y in both the cases, which says you can all together eliminate this

node x and get a reduced representation like this. So, these two rules I mean if you apply

repeatedly on a binary addition diagram, then the size of the BDD will  be going on

reducing step by step and finally, we shall be getting representation which is called the

ROBDD, or the reduced order BDD representation of the function. 
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Let us take an example complete example, for constructing the reduced order BDD. So,

we considered a three variable function like this a function of three variables ok. 
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So, if you use the method for constructing BDD that we discussed earlier, you have the

function here let us say I expand the variables, in this order first x 1 then x 2 then x 3 so,

I  am  not  showing  the  steps  you  can  use  this  expansion  step  to  get  the  functional

representation so, I am only showing the final one. So, once you do this the BDD you get

will look like this, this is your initial form non reduced version of the BDD right.



Now, you see you will  be apply in  those two rules  that  I  mentioned in  a  repetitive

fashion, you will be merging nodes whose left and right childs, or low and low and high

childs are identical, or if you get isomorphic sub graphs merge them. Now, with respect

to the original BDD 1 observation,  you can immediately see that in the terminal part

there are so, many 0 and so many one nodes. So, why not merge all the 0 nodes into 1

and why not merge all the 1 nodes into 1 that is the first step we do ok.

So, you see here in this example there are 1 2 3 0 nodes and 5 1 nodes. So, the first step

you do is something like this, we use a single copy of this 0 node and a single copy of the

1 node, you see the 0 nodes are pointed from where the dotted h for x 3, you see from

dotted x 3 comes here dotted h from this x 3 still comes here, this x 3 also comes here

and also from here, this also comes no this 3 only ok.

And the 1 the they write this solid arrow for this x 3 the solid arrow from x 3 coming

here, the solid arrow from this x 3 also solid arrow, solid arrow from this x 3 solid arrow

and both dotted and solid arrow from this x 3 right. So, this is the first step of reduction,

now in this step you can make some observations, well the first thing is that you see if

you look at this part, x 3 both the dotted and solid edges are pointing to the same node.

So, as per as our reduction rule we can eliminate x 3 and, another thing also you see if

you  look  at  just  look  at  these  two  nodes  this  x  3  and  this  x  3,  you  see  these  are

isomorphic why because in this x 3 the low child points to 0 and high child points to 1,

here also low child points to 0 high child points to 1 so, they can be merged.

So, after this reduction step we get something like this, you say exactly what I said this x

3 was having two parallel edges pointing to 1 so, here we have eliminated that three this

x 2 is now with a one edge is directly pointing 2 1 x 2 is directly pointing to 1, and these

2 x 3s have been merged into 1, this is x 3 and input edges was see one was coming from

x 2 the dotted line in the solid line, now from x 2 both the dotted line in the solid lines

are now pointing to x 3 right. So, after this reductions so, you get this.

Now, in this version you see now again who have the scope for reduction, you look at

this part of the graph, this x 2 has both the dotted and the solid, solid arrows pointing to

the same node. So, x 2 can be eliminated ok. So, you get finally, after eliminating x 2 a

BDD like this. So, you can understand what is the purpose of carrying out this reduction,

because in the original BDD there were 8 terminal nodes in the lowest level 8 for 12, 14,



15 total 15 nodes. And after reducing you are left with only five nodes for larger function

the reduction can be even more, this is the basic purpose of carrying out reduction and

getting order BDD.

So, what we get finally, here this is your ROBDD, for this particular variable ordering

that reduce x 1 x 2 x 3, but if you use some other variable ordering, then you can get

some other structure for ROBDD fine. 
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So, some benefits of ROBDD are pretty straight forward to understand, you see you have

a function f now I want to check, if the function is equal to 1 for all assignments of input

variables such a function is called a tautology, now for a BDD it is very easy to check

whether a function is tautology.

Because the ROBDD of that function will simply be like this, it is straight away point to

the node 1 right, not only dot also dash. So, checking for tautology simply f will be

pointing directly to 1, the second thing is that complementation well you look at the ok.
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Let  us  take  an  example  we  did  not  trying  to  illustrate,  suppose  I  have  a  BDD

representation let us say I have x 1, I have x 2, I have x 3 here and I have 0 here, and I

have 1 here, let us say x points to it is, suppose I have a function like this is f. 

Now, what I am saying is that suppose I have a BDD of a function f, now I want to get a

generate a BDD for the compliment function should, I have to go through the process

again and construct the BDD. It says it is not required if you have the BDD for a function

f, just interchange 0 and 1 make this 0 as 1 make this 1 as 0.

So, for all those cases where the function was getting the value 0, now it will get the

value 1 and for all cases where it was getting 1, now it will get 0 just the reverse right.

And  thirdly  these  equivalents  whether  two  functions  are  identical  or  not  it  is  easy

because, here you have seen that ROBDD is canonical. So, if you construct the ROBDD

of the two function and show that  they are the same, then you can say that  the two

functions are equivalent, or otherwise the functions are not equivalent ok. 
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Now, means you can use this ROBDD in various ways for synthesizing circuits also. So,

we shall be taking some examples say earlier I mentioned that the 2 2 1 multiplexer the

way we designed a function using such multiplexers. And the way we realize a BDD

implement of BDD using repeated Shannon decomposition they are very similar. So, a

BDD node and a 2 2 1 multiplexer they have a one two one correspondence.

Let us take some examples so, in synthesis what I mean to say is that you see some of the

reduction rules that we are applying, we already mentioned that one is this rule, where if

a node is pointing both edges to the same node I can eliminate that node well. In terms of

switching algebra what it does that mean, you see if this entire sub function below, this

represents a sub function h. Then this BDD represents x bar h or x h the left hand side so,

if you take h common it will be x or x bar which is equal to 1 it get is eliminated only h.

So,  this  kind  of  a  algebra  minimization  is  implicitly  carried  out  during  this

transformation. Similarly the other one there are two identical or isomorphic sub graphs,

suppose they represents h this means plus bh. So, if I merge them like this it means a or b

and h they also have the same. So, again using some rules of the switching algebra we do

this kind of minimization. So, we are doing the same thing implicitly using this graphical

data structure of BDD. 
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So, so let us make one point here this already we have mentioned that variable ordering

can reduce the size of the BDD ok. Now, this variable re ordering is also one way to

minimize the logic implementation, implicitly. So, we are not talking or thinking about

gates circuits minimizing, we are thinking about the function the BDD representation, we

are trying to find out what kind of variable ordering can give us a BDD which is smaller.

Now,  a  smaller  BDD  may  mean  a  smaller  circuit.  So,  we  are  thinking  about  a

correspondence like that and, during the construction of the BDD itself as we are seen

some redundancy are implicitly removed. So, the idea is that when we use a BDD, we

are  already  carrying  out  some  minimization  function  minimization  while  you  are

constructing the BDD, while you are applying the reduction and merging rules to get the

ROBDD, where already applying some minimization right ok. 
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Now, let us talk about the multiplexer realization of functions, you think of a scenario

like this decision node in a BDD, labeled x it is low child represents a function f, the

high child represents the function g. Now, if I want to implement this decision node by a

multiplexer while a multiplexer symbolically sometimes denoted like this, like trapezium

this is your select line.

This is your multiplexers select line, this is your multiplexer output and this side are the

inputs and 0 1 indicates, if x equal to 0 which is selected f is selected x equal to 1 g is

selected. So, this is a exactly what the decision node means, if x is 0 you come this side,

if x is one you come this side. So, this can be directly mapped to a multiplexer and you

can  repeatedly  do  this  is  f  and  g  can  be  further  decomposed  you  can  have  more

multiplexers generated for f and g fine. 
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Let us consider some scenario like this, well you have two sub functions f and g well I

am showing some segments of BDD and, you can have a decision block here which can

be represented by h it means if some condition h is true, then you go to h g if h is false,

then you come to f; that means, if h is 0 then f if h is 1 then g. 

Now, if we have a scenario like this if you can identify this h, then you can again realize

this using a multiplexer what this select line is generated from h, because depending on h

equal to 0 or 1, you will be selecting either f or g if it is 0 if selected, if it is 1 g is

selected right.
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Let us look at a concrete example here, considered a scenario like this where you can say

this part indicates h. And this is our c and d or our means inputs so, you can have a

multiplexer like this see can be fed to one side, d can be fed to the other side and this h

whatever it is this h network, this can be used as the select line. So, you can have a

mapping for the multiplexer realization like this ok. 
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Let us work out a complete mapping example with respect to the BDD that we had taken

as example earlier, this was the ROBDD that were generated from the function. Now,



what  we  want  to  know  now  is  that  let  us  have  a  complete  multiplexer  based

implementation for this function. So, how do we do this? We start from the root side, let

us  take  x 1 we take  1 multiplexer  here;  the  output  of  the  multiplexer  generates  the

function f.

The select line is connected to x 1, now there are 2 0 and 1 now we will be having two

inputs here, one is for select line 0 other is for select line one let us show them like this.

Now, if it is select line 0 where do you go you come to here x 3 so, there will be another

multiplex out here, this will be selected by x 3. So, again they will be a 0 input and a 1

input and for x 3, this 0 input is connected to 0 and the one input is connected to 1. So,

you can directly connected it to 0 you can directly connect it to 1. 

But for the other case here you have x 2 so, here you have a multiplexer, which will be

selected by x 2 and the 0th input will be connected to x 3 so, this one so, x 3 node is

indicated by this. So, this same thing will go here 0 input and the one input is connected

to 1 so, one input is connected to 1. So, you see this BDD using a pure multiplexer

realization you can have something like this.

But of course one thing you understand, that this may not be the best possible realization

for example, if you look at this part what does this function mean, extremely select line 0

here and 1 here, it means if x 3 is 0 you send 0 if x 3 is 1 you send one this is as good as

x 3, you can eliminate this multiplexer and you can directly connect x 3 here ok.

So, such minimization are possible, but in general for a large BDD for every decision

node you can directly map them into a 2 2 1 multiplexer. So, this is a very convenient

and easy way to map a BDD to a multiplexer network. This is one of the ways in which

synthesis of circuits using multiplexer kind of a network can be carried out ok. 
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So, to summarize we have talked about BDDs, now BDD has many applications, they

have been traditionally used to represent and manipulate switching functions of Boolean

functions in many way, they are used to generate circuits which are called synthesis, they

are used to verify the operations of circuits, there is a branch called formal verification

where they are very heavily used.

And there are many software packages which are available already in internet which you

can download  and use  for  manipulation  of  BDDs.  So,  you can  create  a  BDD for  a

function you can minimize them in various ways you can do (Refer Time: 29:46) given

to BDDs, you can find the and of the 2 BDDs or you can complement a BDD lot of such

operations can be carried out, these are all supported by the BDD tools. So, with this we

come to the end of this lecture.  So, what the last couple of lectures we talked about

binary decision diagram, which is a very important data structure that is used to represent

and manipulate switching functions.

Thank you. 


