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So far we have seen different ways in which we can represent a switching function. We

looked at the truth table; we looked at various algebraic forms, like the sum of product,

the product of sum and so on. Now, over the next few lectures we shall be looking at

some of you can say unconventional, but very effective ways of representing switching

functions which have many applications. So, in many applications we do not represent a

function just by truth table or by an expression, but by using one of these representations

that we shall be discussing.

Now, the  first  such  representation  we  shall  be  discussing  is  called  binary  decision

diagram. So, this is the first part of our lecture.

(Refer Slide Time: 01:16)

Let us try to understand first what is a binary decision diagram? So, as you can see form

here  from  this  slide  binary  decision  diagram  in  short  we  referred  to  as  BDD,  is

essentially data structure. We call it, a way to represent some information to represent a

switching function or a Boolean function. BDD is nothing but some kind of a graph.



Now, for  those  of  you  who  were  not  familiar  with  graph  let  me  give  you  a  brief

introduction to a graph.

(Refer Slide Time: 01:57)

As you see when you referred to a graph, a graph essentially consist of a set of vertices

and a set  of edges.  So, an example graph is these are the vertices  typically  they are

represented by circles and there are edges, this edges can connect circles. Now, there are

many applications where you can represent the information as a graph. Let us say this

circles can indicates some cities or towns and these lines can indicate the roads that are

connecting them. So, these edges can also have some labels; for example, in the example

as sited the distance in kilometers can be the level of the edges, right like this and so on.

And, there are some graphs where these edges can have directions. Like some of the

roads may be one way roads, right. So, you cannot drive in both directions, so such a

graph is called a directed graph.

Now, there is another term which we use is called an acyclic graph. See, a cycle in a

graph means something like this. Suppose, I have a graphs so, let us add directions to the

edges. So, you see there is some kind of a cycle like this there is a directed edge, if you

consider these four edges together starting from this vertex A, I can go to B, I can go to

C, I can go to D, then I come back to A, this is a cycle. Now, an acyclic graph is one

where there is no cycle, right.



Now, a special type of a graph is called a tree which is of course, acyclic and a tree looks

like this. So, I am just giving an example of a tree, this tree does not have any cycle and

this edges can have directions again may not have direction and there is one special node

which is referred to as the root which is considered to be at the top of the tree. So, these

are some definitions  or concepts  that we shall  be using in our definition of a binary

decision diagram.

Now, let us see, binary decision diagram is an acyclic graph, there are no cycles, the

edges are directed. Well, we may not be showing the arrows in the diagrams, but as a

matter of convention so, any edge that connects a node which is on the top to a node at

the bottom will be assumed to have a direction like this top to bottom, and there will be a

special node which will be designated as root, root at node.

Now, the vertices can be of two types in a BDD. So, here we shall be see with example

some vertices are called decision nodes, some vertices are called terminal nodes. Now,

the terminal nodes are marked as 0 and 1, there is one terminal node called 0 there is one

terminal node called 1, there can be several such. These are called 0-terminal and 1-

terminal. They indicate the logic value 0 and the logic value 1.

(Refer Slide Time: 06:21)

Talking about the decision node a decision node looks like this a decision node is labeled

by a Boolean variable. Let us say I have a variable a, so, the vertex the decision node will

be labeled by a and there will be two child nodes. Well,  the nodes that connect to it



below they are called child, this is called the parent. So, there can be two child node let

us say one here and one here. So, I am showing two different kind of edges one show it

as dotted and one showed as solid. So, the left one I call it as the low child, the right one

I call it as the high child, this is the convention. It has two child every decision node will

be labeled with a variable a and will be having two child’s left and right; left indicates

the dotted line, right indicates the solid line.

They are called low child and high child and low child and high child actually indicates

so, will be going to the left direction whenever a is equal to 0 and will be going to the

right  direction  whenever  a  equal  to  1.  So,  the  edge  the  two  edges  represent  the

assignment of the variable here a to either 0 or 1.

Now, this we shall see later. So, in a BDD we will be having several such nodes, they

will be labeled with variables. Now, if starting from the root that is a special node called

the root. So, if you look at the different decision nodes that come in between. So, if the

variables appear in the same order in whatever path we traverse from the root then we

say that it is an ordered BDD, ordered binary decision diagram. This we shall see later,

ok.

(Refer Slide Time: 08:15)

Let us now look at how a binary decision diagram looks like. Well, here we consider a

three variable function represented by a truth table like this. So, you see these are the

output 1 0 0 1 0 0 1 1 and a, b, c are the three variables. Now, this is a classic kind of a



binary decision diagram where the root node is  on top,  this  is  the root and the root

indicates the function f, ok. Now, I have two paths left and right. So, a will be having a

low child and a high child, this corresponds to a equal to 0, this corresponds to a equal to

1.

Similarly, at  the next level  I  have nodes which are marked by b.  So, in the left  this

indicates b equal to 0, this indicates b equal to 1, this also is b equal to 0, b equal to 1 and

similarly, at  the lowest level  there are nodes mark c,  similarly they will  indicate  the

values of c equal to 0 and 1, like this.

So, now, you see starting from the root if you traverse along any path for example, if I

traverse the left most path, I traverse the edges a equal to 0, b equal to 0, c equal to 0, I

arrive at the terminal node 1. This corresponds to the first row of the truth table 0 0

output is 1. So, you consider one case where the output is output is 1 again let us say 0 1

1. 0 1 1 I come here; let us take a 0 case let us consider this 1 0 1, 1 0 1.

(Refer Slide Time: 10:21)

So, you see essentially what we do here is that if we look into the output column of the

truth table 1 0 0 1 0 0 1 1, we simply copy this as the terminal nodes at the lowest level.

This will gave us one representation for this function, this is what we referred to as the

binary decision diagram.



Now, one problem with this representation is that because the size of the truth table is

exponential for an n variable function the number of rows is 2 to the power n because of

the same reason the number of terminal nodes here will also be 2 to the power n. So, this

size of this binary decision diagram will be exponential in size, exponential in n. So, it is

pretty  large.  So,  we shall  see that  there exists  some techniques  using which we can

reduce the size of the binary decision diagram. So, it need not be exponential in size we

can reduce the size of the BDD to a great extent we shall see some examples in this

regard, ok. Let us move on alright.

(Refer Slide Time: 11:40)

Earlier we talked about the Shannon’s decomposition theorem. So, we again revisit that

same thing Shannon’s expansion we are calling here of a function. Now, the idea here is

that  we can  construct  a  BDD from a  given function  by repeated  applications  of  the

Shannon’s decomposition theorem or Shannon’s expansion theorem.

Now, recall  earlier  when  we  talked  about  the  multiplexer  realization  of  a  function

representing a function using two to one multiplexers, there also we did the same thing.

We successively decomposed a function into sub functions by applying the Shannon’s

decomposition theorem, we got smaller and smaller functions and every decomposition

was  map  to  a  two  to  one  multiplexer.  Here  the  concept  is  almost  identical  every

decomposition will be corresponding to one decision node of the BDD and we repeatedly

do it we get the complete BDD, let us see.
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Take an example. Suppose, I have an n variable function f the variables are x 1 to x n in

general  there  is  a  variable  x  i.  So,  we talked  about  this  earlier  also.  So,  we define

something called a positive co-factor. This we denote as f i with 1 in this superscript

which means the same function where this x i is replaced by 1, this is referred to as the

positive co factor with respect to variable i. So, in the same way we can define a negative

co factor negative co factor is very similar which is denoted by f i 0, where this variable

xi is replaced by the constant value 0, right.

Now, Shannon’s expansion theorem we have already seen. Now, here we have showing

two forms of expansion one of that we have seen earlier. So, in Shannon’s expansion

theorem we can write the function f like this.  So, when you expand a function with

respect to x I can write x i dash. That means the compliment of x i multiplied by the

negative co factor with respect to x i plus the variable x i and the positive co factor. Now,

there is an alternate representation also which you have not talked about earlier, where

this is something like product of sums. This same function we can write like x i plus f i 0

and x i bar plus f i 1. But, of course, we shall be using the first representation only in our

examples and illustrations.

Now, one thing you see the why we expanded here this one. So, we can map it into a

decision node of the BDD, where the node will be labeled by x i and the left and right



this is this corresponds to x i equal to 0, this corresponds to x i equal to 1, the low and

right child’s they will be corresponding to f i 0 and f i 1.

So,  basically  and  this  of  course,  this  will  represent  the  function  f.  So,  every

decomposition of the Shannon expansion can be mapped into a decision node of the

BDD or a decision vertex, this is the basic idea.

(Refer Slide Time: 15:48)

So, function example here consider a three variable function like this. Here in this step

we are decomposing this  function with respect  to the variable  a.  So,  we write  a bar

multiplied by the negative co-factor, replace a by 0 you get b bar c bar and bc plus a

multiplied by the positive co-factor replace a by 1, this become 0 c plus bc. Now, c plus

bc  can  be  simplified  into  only  c  and this  cannot  be  simplified  any  further.  So,  this

decomposition as I said can be conceptually mapped into a decision node, where this

node is labeled a the low child refers to this function b bar c bar plus bc and the right

child refers to this function c, ok.

This is of course, the first step and we repeatedly go through this, next we will be doing

let us say using variable b. Next we will be doing using variable c and so on. Let us see

how we do it.
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Well, here the whole step is shown. The first step we have already seen, this step we have

already seen in the previous slide. So, where we have expanded the function with respect

to variable a and we have got two sub functions b bar c bar plus bc and only c. In the

next step let us suppose we are trying to expand with respect to b. So, this b bar c bar

plus bc if you do a Shannon expansion with respect to b you do it in a similar way b bar

multiplied by the negative co factor with respect to b, replace b with 0 this all becomes 0

it becomes only c bar, only c bar and b multiplied by positive co-factor, replace b by 1, it

becomes only c.

Similarly, for this variable c you do the same thing with respect to b, b bar multiplied by

replace b by 0. There is no b, so, it remains c, b into positive co factor replace b by 1, no

b so, it remains c and in the last step we expand you see. Now, we have got four sub

functions c bar, c, c and c bar. So, you see the size of the sub functions are getting

smaller and smaller as you proceed. So, in the last step we expand by c, you see c bar can

be written like this c bar multiplied by the negative co-factor replace c by 0 it becomes 1,

plus c negative co the positive co-factor replace c by 1, c bar becomes 0, right, but if it is

c, then c bar multiplied by replace c by 0 it is 0 c into replace c by 1, it is 1. So, in this

way I get this.

Now, you recall when you do the expansion here I have shown a, b, c I can do it in any

order. I can first use b then a then c or I can use first c then a then b and so on. So, here I



have illustrated only one particular order, the variable ordering is a, b, c. So, at the end I

get some constants or terminals you see 1 0 0 1 0 1 0 1 remember this 1 0 0 1 0 1 0 1.

(Refer Slide Time: 19:44)

So, I can directly map this into a BDD like this 1 0 0 1 0 1 0 1. So, so, my order of

expansion was first I use variable a. Next level I use variable c, third level I was used

variable c b and c right, this is how we had carried out the expansion.

(Refer Slide Time: 20:10)

Let us take another example, let us work this out. Suppose, we have a function like this a

bar bc plus b bar c bar plus ac let us follow some particular I am not may say a, b, c let us



say first we expand with respect to variable c, let us see. So, it will be the function will

be c bar the negative co-factor replace c by 0, this will become 0, it will be b bar or a, b

bar or a, b bar or a plus c into replace c by 1, the last two will become 0, it will become

only a bar b a bar b. So, I have got two sub functions b bar plus a and a bar b.

In the next step let us expand with respect to a, let us say. So, this function if we expand

with respect to a, this will be a bar into replace a by 0 it will be only b bar plus a into

replace a by 1 this will be something plus 1, it will be 1, right. In the same way if you

expand this with respect to a, it will be a bar replace a by 0. So, it will be only b plus a

replace a by 1 this will be 0. So, now, we have four sub functions b bar, 1, b and 0. Now,

we are left with b, ok, we will be expanding with respect to b.

So, b bar can be expanded as b bar replace b by 0 this will be 1 plus b replace b by 1, this

will be 0 and here we have a constant one. So, if we expand by b, b bar replace b by 0,

there is no b, this remains 1 plus b into replace b by 1, it remains 1 and for b it will be b

bar replace b by 0, this will be 0 plus b replace b by 1, this will be 1 and for 0 this will be

b bar into 0 plus b into 0. So, now, we have 1 0 1 1 0 0 0 0.

So, now, our BDD will look like this will be having the root node c at the top level this

will represent the function f, at the next level will be having a, a, and a this will be the

negative edge 0 and this will be positive edge. Next level will be having b, b, b, b and b.

So, this will be negative, this will be positive, this will be negative, this will be positive

and in the last level will be having c no, not c ok, c a b you have taken already.

So, last level you have the terminal nodes. So, if you take the terminal nodes. So, we

have 1 and 0. So, you will be having 1 out here, 0 out here like this then 1 and 1, 1 out

here, 1 out here like this 0 and 1 0 out here, 1 out here and 0 0. So, we have obtained the

binary  decision  diagram for  this  function.  So,  given  any  variable  ordering  you  can

construct the BDD by systematically decomposing the function using Shannon’s law,

fine.
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Now, let us talk about variable ordering. The point to note here is that the size of a binary

decision  diagram is  determined  not  only  by the  function  you want  to  represent,  but

greatly also on the ordering of the variables. You see in general for most of the functions

BDD gives a very compact representation for a function we shall see some examples

later, but what we are trying to point out here is that the ordering of the variable plays a

great role. We shall take an example where the ordering if we change the size of the

BDD can differ to a great extent.  Well,  of course, here we shall be showing you the

reduced or minimized form of BDD which we have not discussed so far, just we shall be

showing you pictorially how the reduced version looks like, later on we shall see how to

arrive at the reduced version.

Let  us  see,  let  us  take  an  example  we  say  that  it  can  be  proportional  to  the  input

variables, it can be proportional to the power of an input variable is called exponential.

Let us take an example. This is a very classic example. Suppose, I have a function which

looks like this, but the variables are paired the product terms are like this x 1 x 2 or x 3 x

4 or x 5 x 6 like this. So, if I use expansion if I use variable orderings like this first I

choose the odd number variables x 1, x 3, x 5 and so on. Then I choose the even number

of variables then it can be shown that I will be requiring exponential number of nodes in

the reduce or minimum BDD representation.



But, if we use a variable ordering which is just x 1, x 2, x 3, x 4 in that order then we will

be  requiring  only  2 n nodes.  This  is  a  very classical  example  which is  given in  all

textbooks which is used to show that variable ordering is very important, ok. 2 to the

power n is very large, it grows very quickly with respect to n, but 2 n is proportional to n.

(Refer Slide Time: 27:13)

Let us take a very specific case of that function, where there are eight variables. So, x 1,

x 2, x 3, x 4, x 5, x 6 and x 7, x 8. First we considered the bad variable ordering; that

means, we expand with respect to this first the odd number of variables x 1, x 3, x 5, x 7,

then the even number variable x 2, x 4, x 6 and x 8. So, you see here the entire BDD

shown of course, this is not the conventional BDD. This is the reduced version of the

BDD. So, we shall see later how to reduce a BDD in size.

But the point to note is that you see there are large number of nodes in this representation

if you count how many 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 20 23 27 30 and 2

terminal nodes total 32 nodes are there in the BDD representation, if we have a variable

ordering like this, right.
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But,  this  same function  if  we use  an  alternate  variable  ordering  like  here  the  same

function we are using a variable ordering like this x 1, then x 2, then x 3, then x 4, then x

5, x 6, x 7, and x 8; then we have you see such a compact representation of the function

where the number of nodes are 1 2 3 4 5 6 7 8 9 10 only 10 nodes are there. So, this is a

very classic example which is used to illustrate. But, the ordering of the variable is very

important and most of the BDD generation and manipulation tools they try to find out

very good ordering of the variables, so as to minimize or reduce the size of the function.
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So, the important point to note is that just and mention this just now, that it  is very

important to find a good variable ordering and we have a binary decision diagram here

which is called ordered binary decision diagram, where to ordering of the variable is

defined. Of course, finding the best ordering is not easy this is this NP-hard is a class of

problems which are consider to be computationally very complex. Why? If there are n

number of variables the number of possible orderings can be factorial n and factorial

function grows very rapidly with n, right. That is why this are very difficult problem.

But, there are a number of rules or heuristics these are called which are used to find a

good variable ordering in general.

So with this, we come to the end of this lecture. Now, in the next lecture we shall be

looking at how we can reduce the size of the BDD to the form in the two examples that

we showed. The conventional BDD looks like a tree, how we can reduce the size of the

tree and make the BDD more compact, such rules we shall be discussing in our next

lecture.

Thank you.


