
Switching Circuits and Logic Design
Prof. Indranil Sengupta

Department of Computer Science and Engineering
Indian Institute of Technology, Kharagpur

Lecture – 26
Logic Design (Part III)

So, we continue with our discussion on Logic Design, this is the third part of our logic

design lecture.

(Refer Slide Time: 00:30)

.

Now here, the first thing that I would like to talk about is to discuss some kind of special

decoder design, but before I go into it let me try to give the motivation, see we talked

about the design of decoders. Now, you imagine that you are trying to design a 4 to 16

decoder.

Now, if you design 4 to 16 decoder directly using gates not using smaller decoder as you

are seen, directly using gates, then for every output you need a large gate you need an

and gate with 5 inputs, 4 inputs will be some combination of the input variables and one

for the enable. So, you will be needing 16 AND gates each with 5 inputs.

Now one difficulty in designing circuits is that when the number of inputs of a gate

increases, it becomes increasingly difficult to design and manufacture those gates while

the gates become unreliable, they consume more power they become slower and there

are many drawbacks. So, it is always attempted to keep the number of inputs to a gate as

smallest possible. So, instead of designing a very large decoder just in one go it is always

better to design smaller decoders and use it to build up big decoder larger decoder.

Like the example we showed that using 2 to 4 decoder we can construct 4 to 16 decoder.

Now, here we shown an alternate approach here also we are trying to build a 4 to 16

decoder, but the approach is different. So, here I am showing this schematic so, we are

using two 2 to 4 decoders. If the concept is that I mean using a row column concept,

there are 4 columns and there are 4 rows.

One of the decoder depending on two of its inputs will be selecting one of the rows. The

other decoder depending on the other two inputs will be selecting one of the columns.

Suppose you applied W X equal to 1 1 which means the 4th row is selected and, if we

apply W Z equal to 1 0 which means third row is selected.

So, it is 1 1 and 1 0 so, this last row and third column means I am referring to this

junction, now what I do at every junction I connect an AND gate you see, every row line

and every column line I connect as inputs to an AND gate and the output of the AND

gate are my decoder outputs. So, just imagine here 1 1 and 1 0 will what if it is 1 1, then

only the last row will be 1, if it is 1 0 the third column will be 1.

Now, if I connect through these two lines and AND gate, both of this input will be 1 and

1 I have connected this and this. So, the output will also be 1, but for all other AND gates

this both inputs will never be 1 at least one of them will be 0. So, all others will be 0 only

this will be 1. So, this works perfectly as a decoder depending on what I am applying to

the input W X and Y Z exactly one of the gate outputs is becoming 1, that is my decoder

output normally large decoders are built, or constructed using this way, because here as

you can see the number of gate inputs are all small all two input and gates you required

right ok.

(Refer Slide Time: 04:45)

.

So, next move on so, let us talk about another kind of a special decoder, which is

sometimes very useful particularly, when we work with BCD numbers, we need to use a

decoder to identify what decimal digit, or BCD digit is that we need a decoder which is

called a BCD to decimal decoder.

BCD as you know, BCD is a 4 bit number encoding, that is a W X Y Z is BCD and in

BCD number the valid numbers go from 0 0 0 up to 9, the remaining 6 combinations are

considered to be not valid. So, in the output we have only 10 outputs not 16 outputs like

in a normal decoder, depending on whether you are applying one of these so, one of the

outputs will be one so, again there is an enable.

So, the way you construct the decoder is exactly same as the normal decoder, let us say

this 5, the gate for this 5 this 5 indicate 5 is 0 1 0 1. So, we will be connecting using first

one to connect enable, then you connect X, then you connect Y bar, then you connect Z

and of course, W bar.

So, this way you can connect this inputs in various way and of course, here what final

realization we have shown is after minimization, because you see in this case among the

inputs there are 9 valid inputs and they were 6 don’t cares.

(Refer Slide Time: 06:47)

.

So, when you do a minimization these don’t care inputs also will result in the

cancellation of the some of the terms. So, I am showing just the final realization, I am

not showing in the steps of minimization. So, this is another kind of a decoder that we

use in some designs BCD to decimal decoder.

(Refer Slide Time: 07:17)

.

There is a another kind of a decoder which is also very useful well we have also, we have

all seen this kind of digital displays in many gadgets and places in a in our calculators, in

our washing machines, in our refrigerators different places, where there are some digitals

displays the displays that display the number of displayed in a very specific way these

are called 7 segment displays.

So, how 7 segment display you see here I have shown a picture of a typical of 7 segment

display unit, you see 7 segment display unit there are 7 lamps, which are typically

numbered or named as a b c d e f g by selectively drawing this lamps, you can display

any of the digits from 0 to 9. Let us see if you want to display 5 you display this digits

this lamp this is 5. So, if you want to display 3 you display these 0 to 9, you can display

anything right.

So, basically this 7 segment display units that we talk about these displays, there are 7

display segments that that I have shown here and, the way they are manufactured that

can be different, they can be manufactured using light emitting diode, liquids crystal

display, neon lamp or any other technology. So, as I have said the examples depending

on what digit you want to display, the appropriate segment should be activated and they

should glow ok. So, these displays come into variety.

(Refer Slide Time: 09:16)

.

Let us talk about light emitting diode LED kind of displays, the first variety is the

common cathode variety, where this 7 segment are actually 7 LEDs, or light emitting

diodes, they are called common cathode as the cathode terminals of the 7 LEDs are tied

together, this is the common terminal which you connect to ground.

And you apply a voltage to the this a b c d e f g input depending on which one you want

to glow ok. Similarly you can have a common anode kind of a display unit, where the

LEDs are connected in reverse order, the anode point is connected together and, they are

connected to a positive supply voltage and, when you want to glow a digit you will have

to ground the corresponding input so, that a current flows ok.

Now, in the example that you will be showing will be assuming that is common cathode

that means, if you want to display a segment you have to apply a high voltage let us say

1 on that line, the other side is grounded. So, when you talk about BCD to 7 segment

decoder we are talking about a circuit like this.

So, we want to design a decoder this, where there will be 4 input applied this is our BCD

input and 7 segment outputs will be generated which will be connected to the 7 segments

of this display A B C D E F G and depending on the BCD input the correct segments will

be activated so that the corresponding digit blows this is a basic idea.

(Refer Slide Time: 11:25)

.

So, the truth table the BCD to 7 segment decoder looks like this. So, I have also shown a

7 segment display here side by side for reference, let us say my digit is 0. So, when I

want to display 0 other than g all the other segment should be 0. So, you see a b c d e f

are all 1 only g is 0. So, if I want to display 1 only B and C must glow all other should be

0, you see only B and C are 1, for 2 a b g e n and c should glow A F and C should be off

you see for 2 C is off and F is off.

So, like this you can display all the digits say for 8 all the segments should glow all are 1

for 9 only E and D should be off, for 9 only E and D should be off other should glow. So,

it is easy to construct this table right corresponding to the BCD input code. So, exactly

how I you want to display it so, you can just activate the segment assuming common

cathode display that 1 means it will glow 0 means it will not glow ok.

And, just from this you can write down the expressions also, I have not shown you the

exact process of minimization again well I leave, this again exercise for you this a 4

variable function there are so, many don’t care states 10 11 12 13 14 15, there are 6 don’t

care states. So, when you if you I mean when you use a Karnaugh map you can use this

don’t care states also for minimization, let me take one example as an instant sorry yeah,

let us take one example let us consider a 4 variable Karnaugh map, let me show you one

x 1 x 2 x 3 x 4 let us say x 1 x 2 is in this direction, x 1 x 2 and x 3 x 4 in this direction

let us say.

So, the inputs as 0 0 0 1 1 1 1 0 and 0 0 0 1 1 1 1 0, let us take this segment A for

example, segment has many Karnaugh let us take another let us say segment C, C can be

minimized let us have C look at the segment C, or fine fine A is fine let us take a look at

the segment A.

You see where they are 1 for 0 this is 0 1 2, 2 is 0 1 2 is this, then 3, 3 is also 1 this is 3 4

is 0 5, this is 4 this is 5 5 6 7 4 4 5 6 7, this is 7 and 8 and 9 this is 8 and this is 9, this is

your Karnaugh map and in addition there are 6 don’t cares 10, 11, 12, 13, 14, 15, 10 is 1,

0 so, I am showing the don’t care as x these are all don’t cares, these 6 are don’t cares.

So, now, you will have to just include these once and go ahead to the minimization. So,

you can make the cubes like here the 4 corners will be a cube, then you can have a cube

like this, you can have a cube like this, you can have a cube like this, you can have a

cube like this, like if this if you do a minimization we will be arriving at this expressions

ok, I am not working all of them I am leave it as an exercise for you. So, you can actually

verify this ok, minimize this and see that whether it is a expressions are tallying with this

ok.

(Refer Slide Time: 16:16)

.

Let us move on next let us come to a circuit, which you can call it is an reverse of the

decoder, I call it an encoder, there are many inputs, there are few outputs, depending on

which input is activated at a time I am assuming only one of the input is active.

So, the output will contain the binary code of the input which input that is active, let us

see how it works. So, an encoder will typically have 2 to the power n input lines and n

output lines. So, here there is an example for n equal to 3, there are 8 input lines and 3

output lines. So, I am assuming here that only one of the input lines is one at a time. Let

us say D 3 is 1 the output will contain the binary code of D 3, 3 is 3 so, it is 0 1 1 that is 3

this will be the output, if this 6 is 1, 6 is 1 1 0 so, it will be 1 1 0 and so on this is how the

encoder will work.

(Refer Slide Time: 17:41)

.

So, for a normal encoder the truth table will look like this. So, this is the first case I am

show, if you see here again you need not show all the there are 8 inputs. So, there will be

2 to the power 8 possible input combinations. So, you need not show the whole truth

table, because this is a functional block you can show only the functional rows. The first

row says only this row is 1 others are all 0s. So, this will mean 0 0 0, if D 1 is 1 0 0 1, D

2 is 1 0 1 0 like this, where the other inputs are not valid and they are all don’t cares.

Now, now one issue here is that in this kind of an encoder design that, we are assuming

that exactly one of the input is at 1, but let us say by accident or otherwise I have also

made another input as 1. Let us say D 4 is 1 D 0 is 1. So, what will be my output? So,

will it be 0 0 0, or will it be corresponding to D 4 1 0 0.

So, for the other input combinations where more than one inputs can become 1, there is

some ambiguity. So, to remove this ambiguity normally the encoders that we design,

they are something called priority encoders not a normal encoder like this table shows,

now in a priority encoder the input lines will have some priority like. Suppose, I have

said D 0, I have applied 1 D 4 also I have applied 1 and I am saying line that the D 4 is

having higher priority than D 0.

So, if both of them are 1 D 4 will take priority and the output corresponding to D 4 will

be generated 1 0 0 this is how the priority encoder should work. So, for a priority

encoder the basic concept is like this let me just repeat.

(Refer Slide Time: 20:00)

.

Now, let us put it in the proper context, see a priority encoder, or means any encoder

circuit, they are used an application. Let us say 4 inputs and 2 outputs, they are used an

application where some sub circuits, or some devices or some units they are generating

some kind of requests, the input lines are assumed to represent you need that requests

some service.

And the output will indicate that which one of the inputs that the input 0 1 2 3 there are 4

input units, which of the inputs are generated the request. Now, in a priority encoder as I

said whenever 2 of the inputs let D i and D j, where i is greater than j request service

simultaneously, then you assume that D i is having higher priority, because i greater than

j. So, the output will be generating the binary code for the highest priority input that is

active. So, this is how the priority encoder works ok.

(Refer Slide Time: 21:22)

.

Let us look at the truth table it will be clear think of an 8 by 3 priority encoder there are 8

inputs, there are 3 outputs. For the first case where only D 0 is 1 others are all 0s, there is

no ambiguity it is 0 0 0, but when D 1 is 1, D 1 has a higher priority than D 0. So, D 0

will be don’t care D 0 can be 0 or 1 does not matter, but D 1, but the rest are 0s it will be

0 0 1, but when D 2 is 1 the lower priority 1s will be don’t care, it will only be important

the that the higher priority 1s are 0 0 0.

Similarly, D 3 is 1 lower priorities are all don’t care this is like this so, the truth table you

look like there will be lot of don’t care entries here. So, when D 7 is one for example, so,

the other inputs does not influence the output. So, if D 7 is 1 and the output will always

be 1 1 1 irrespective of the other inputs, right.

(Refer Slide Time: 22:47)

.

This is how priority encoder works then it is again I leave it as an exercise for you to find

out how to generate the expressions, just here I am showing out the expression for the

outputs. So, for this f 2 f 1 and f 0 if you write down the expressions, then after

minimization the expressions will be like this.

So, I leave it as an exercise for you to verify again. So, if you want to implement this

using gates will of course, first you will have to minimize this and then implement these

using gates right ok. So, f 2 for example, you require a single OR gate nothing else is

required f 2 will required a single 4 input OR gate 4 5 6 7, this f 1 for example, will be

requiring 2 AND gates 3 inputs each, well for see a some not gates also some are bar are

the D 4 D 5 bar and D 6 D 7 are direct. So, there will an OR gate correct D 6, D 7 will be

direct hm.

(Refer Slide Time: 24:00)

.

So, similarly f 0 now, let us talk about a circuit element called comparator which is also

very important, sometimes we need to compare the values of the magnitudes of two

numbers, whether they are equal whether one is greater than the other, or whether one is

less than the other, this is called a magnitude comparator a simple comparator digital

comparator.

So, when you talk about an n bit comparator, it basically compares the magnitude of two

n bit numbers A and B and, there will be 3 outputs GT EQ and less than greater than or

equal to less than, where GT will be said to 1, if and only if A is greater than B in

magnitude EQ will be 1 LT will be 1, if A is less than B, this is how the comparator

works right.

(Refer Slide Time: 25:00)

So, let us it is the very simple scenario first, just a one bit comparator. So, I want to

design a circuit, where the two numbers are adjust single bit numbers A and B 1 bit

number, and I have my three outputs greater than less than and equal to.

Now obviously, a greater than B means what for a single bit number that A is 1 and B is

0 this is only case. So, it will be A B bar A B bar less than B means so, here also only

case only one case A 0 B 1 so, A bar B A bar B and equal case A equal to B you see that

can be two scenarios, A 0 B 0, or A 1 B 1.

This can be expressed as A bar B bar or A B which is nothing, but the exclusive nor

function, symbolically it is written like this exclusive nor, if A B are the inputs output

will be this EQ. Because of this property x nor is basically checking equality of 2 bits,

this is sometimes also known as the equivalence function, or the equivalence gate x nor

is sometimes also known as equivalence gate, 1 bit comparator is very easy to design, let

us look into larger size comparators, let us say 2 bit comparator.

(Refer Slide Time: 26:54)

.

Here I am assuming that the numbers are 2 bits A 1 A 2 is 1 number B 1 B 2 is another

number and I want to generate the 3 outputs, you see let us construct the Karnaugh map

this A 1 A 2 along this side B 1 B 2 along this. Let us think of the 3 scenarios separately

greater than so, what are the greater than scenarios.

Let us take some examples A 1 A 2 and B 1 B 2, it is a when A 1 A 2 is let us say 0 1 and

B 1 B 2 is 0 0, then A is greater than B so, when it is 1 0 B 1 B 2 is either 0 0 or 0 1, then

also A is greater than B and A 1 A is 1 1 B 1 B 2 is either 0 0, or 0 1 or 1 0 then also it is

greater so, there are 6 possible scenarios.

So, see in the truth table I am showing this a 6 possible cells, where GT GT GT or not,

because GT LT and EQ will be all exclusive that is why I can show it on the same truth

table, equal to will be 0 0 equal to 0 0 0 1 equal to 0 1 1 1 equal to 1 1 1 0 equal to 1 0

and the remaining cells will be all be less than.

So, directly from the single truth table you can actually write down the expression for all

of them, like for the GT the cubes will be one will be this one will be this and the other

will be this these two and so, on. So, if you write down it will be this. This EQ it cannot

be minimized any further, there will be 4 terms with all containing 4 letters, for LT also

you can combine this 4, you can combine this 2, you can combine this and this and there

will be three terms right. So, a 2 bit comparator is also relatively easy to design you can

do it in this way.

(Refer Slide Time: 29:19)

.

Now, when we talk about a 4 bit comparator let us see, suppose I want to design a 4 bit

comparator, there are two 4 bit numbers B 0 to B 3 A 0 to 3 let us say. Let us denote or

introduce a symbol called x i which is the equivalence of A i and B i that means, xnor

function that means, x i will be 1 if A i and B i are equal.

Now, with this notation we can directly write down the expressions for EQ GT and LT,

you see A and B they will be equal if all corresponding bits are equal; that means, x 3 is

1, x 2 is 1, x 1 is 1 and also x 0 is 1 just end up all 4, G 3 you see you think of the two

numbers the number A and B.

So, if you see that A is 1 that A 3 is 1 and B 3 is 0, then you did not have to see the other

bits, because irrespective of the other three bits will be the most significant bit A is

greater than B, then always A will be greater A 3 B 3 bar, but if you find they are equal

these two are equal 0 0 or 1 1 these two are equal, then you need to see the next bit.

If this is 1 and this is 0 so, you see the first bit is equal and A 2 is 1 B 2 is 0, or the first 2

bits are equal A 1 is 1 B 1 is 0, or the first 3 bits are equal A 1 is 0 B 1 A 0 is 1, B 0 is 0

the LT is just the reverse instead of A 3 B 3 bar is A 3 bar B 3 bar, this is 0 1, they are

equal and this they are equal, then this they are equal then this same way you can straight

away write down.

So, you see for this kind of functional blocks you did not always have to construct the

truth table to write down the expression, you think mentally that what this block is

supposed to do and you can functionally you can write down the switching expression

directly. This often we do for the many of the functional books. So, with this we come to

the end of this lecture on logic design, in our next lectures we shall be looking at various

ways of representing Boolean functions and some of the ways in which you can

manipulate them.

Thank you.

