
Switching Circuits and Logic Design
Prof. Indranil Sengupta

Department of Computer Science and Engineering
Indian Institute of Technology, Kharagpur

Lecture – 22
Design of Adders (Part – II)

So, in this lecture we shall be starting or discussion on how to design parallel adders.

Earlier we had seen how we can design half adder and a full adder; we shall be using

these as the basic building blocks to design this, so called parallel adders. So, the title of

this lecture is Design of Adders the second part.

(Refer Slide Time: 00:38)

So, we mentioned in the previous lecture also that, we shall be looking at various designs

of n-bit parallel adder. So, what is an n-bit parallel adder it means that I have a circuit,

where there are 2 inputs I am applying let us call them a b x y whatever you call let us

say one is X and one Y, both of these are n-bit numbers we show it like this. If you cut it

and write n these means these X and Y are n-bit numbers.

This is shortcut way of showing it and in the output we generate sum, this will also be an

n-bit and carry is a single bit. This is what you mean by an n-bit parallel adder we want

to design a circuit like this fine.

(Refer Slide Time: 01:44)

So, the first design that we look at is something called ripple carry adder and it very

naturally and directly mimics our hand computation the (Refer Time: 01:57) add by

hand. We at the bit stage by stage we accumulate the carry, the carry goes to the next

stage the carry gets added with the 2 input bits are the next stage again carry is generated

it goes to the next stage and so on ok.

So, the ripple carry adder essentially just works on this principle we take n fuller; that

means, we want to design an n-bit adder, we take n full adders and simply cascade them

connect them 1 after the other. So, I shall show you how their connected and the

connection should be such that the carry output from particular stage, let us say the i th

stage must be applied as the carry input to the next stage.

This is how we do addition by hand. So, in the last lecture we took an example that that

we can have an example where the carry can ripple through all this stages during

addition. So, let us show that example once more. So, if you have two numbers like this

that you are adding. So, initially this is no carry I am assuming 0. So, I am adding them

up, the carry is going here, I am adding this 3 numbers again carry is going here I am

adding them up.

So, the carry is going to the next stage. So, if I call any 1 of the stage as stage i. So, the

carry of stage i that is generated will be going as the carry input of stage i plus 1 right.

The sum is generated and the carry will be generate. So, you see if I have full adder now,

if I have full adder like this, but the 2 inputs that are coming let us say the 2 input bits are

applied here, I get the sum that sum bit is generated and whatever the carry is generated

the carry this is my carry out and this is your carry in right. And if use another full adder

site by site this carry out will be connecting as the input carry into the next stage.

So, your inputs are again coming the next sum you generating. So, exactly what you are

doing by hand your trying to do like this. See for the first stage because the carry is 0

will be applying the 0 here right and for all other stages the carry in will be coming from

the carry out of the previous full adder, and the 2 inputs will be applied here and will be

getting the sum bits here, and the carry bits will be generated here right.

(Refer Slide Time: 05:05)

So, this is how an n-bit full adder looks like. You see there are n number of stages there

are n full adders F A 0, F A 1 up to F A n minus 1, the 2 input numbers are A 0 to n minus

1 and B 0 to B n minus 1, Cc 0 is the input carry sum is generated S 0 to S n minus 1 and

final carry outs C n is also generated.

Now, just the point to notice that well if this n-bit adder your using the standalone more,

which means this carry input is always 0, then this first stage of this addition which is a

full adder, you can replace it by a half adder; Because half adder if you recall has only 2

inputs. So, this will only have A 0 and B 0 A 0 and B 0 and it will be generating S 0 and

it will be producing C 1 as the carry out ok. So, if we have an adder added design where

there is no carry input, then you can replace the last stage by an half adder which will be

a little less expensive because number of gates in half adder is less then that of full adder

fine.

(Refer Slide Time: 06:35)

So, what you have said is this there are two numbers were adding, one is A, another is B

both are n-bit numbers input carry is C 0, sum is this and output carry is C n. Now let us

look at the delay calculation, first look at the carries you recall for a full adder we have

said the delay for a carry; that means, the carry out delay is twice delta.

Because there are some and gates followed by an OR gate there is two level circuit delta

plus delta. That is why if you see here we have seen that suppose A 0 B 0 and C 0 has

been applied at time T equal to 0; So, when will C 1 be generated the carry out of this

after time 2 delta.

(Refer Slide Time: 07:38)

So, if you look at the time suppose this is your time. So, this is time t equal to 0 a time t

equal to 0 all the inputs have come all the inputs have been applied all the inputs and also

C 0.

So, at a time twice delta, C 1 will be generated. So, at time twice delta this new value of

C 1 will be fed as an input to F A 1. So, even though A 1 B 1 is applied earlier, but the

carry input is coming now at 2 delta. So, this will be requiring another 2 delta time to

calculate C 2. So, C 2 will be generated at 4 delta time C 2. Similarly C 3 will be

generated at 6 delta time right.

So, in this way if you continue then C n minus 1 will be generated after twice n minus 1

delta and the final carry output 2222 like that it will be generated after twice n delta

right. This is the total delay for the carry now let us see what will be total delay for this

sum.

(Refer Slide Time: 08:55)

Now, you recall for full adder the delay of a sum is 3 delta because there is an XOR

function and XOR is NOT, AND and OR. So, it requires twice delta. So, assuming that

again all the inputs are coming time 0, this sum S 0 will be generated after time 3 delta

because it is an XOR of a 0 B 0 and C C 0.

Now, what about S 1 you remembered just now what you said here that C 1 was

generated at time twice delta. So, it will take another 3 delta time, now A 1 B 1 and C 1

is come at 2 delta it will take another 3 delta time. So, at 5 delta this s 1 will be available.

Now again for the next stage, C 2 is generated at 4 delta. So, S 2 will be 4 delta plus

another 3 delta for this addition.

So, 7 delta. So, it goes like this. So, finally, for S n minus 1 if you just see expand this,

(Refer Time: 10:16) be twice n minus 1 delta plus 3 delta which is 2 n plus 1 delta. So,

you see the delay of the carries two n delta delay of the sum is a little more 2 n delta plus

another delta. So, one characteristic of this kind of ripple carry adder is that, the total

delay is propositional to the number of bits you see 2 n delta 2 n plus 1 delta something

like that.

So, what it means if I want to design very large adder see 8 bit adder, 16 bit, 32 bits, 64

bits then my addition time will go up. 16 bit adder will have double the delay as compare

to an 8 bit adder. 32 bit adder will have 4 times delay as compare to an 8 bit adder. So, it

is not so, easy to expand the number of bits in an addition without scarifying on the delay

this is 1 main draw back here.

(Refer Slide Time: 11:24)

Now, let us see how we can design a subtractor now let now that you know that how we

can design ripple carry adder. So, for parallel subtractor subtraction, we rely on or that

old number theoretic knowledge number system we talked about, we talked about the 2’s

complement number system.

We said when you subtract two numbers it is nothing, but you take the 2’s complement

of the second number and add that is as good as subtracting ok. So, when you say that we

are trying compute A minus B, we can do this same thing by adding the 2’s complement

of B to A and what is 2’s complement? It is 1’s complement plus 1 and what is 1’s

complement? You are doing not of all the bits let us say X i denote the naught of B i. Let

us look at an arrangement like this. So, what we have shown here is nothing, but a ripple

carry adder you see same ripple carry adder. But the only difference is this second input

instead of applying B 0 B 1 B two we are applying X 0 X 1 X 2 and X n minus 1.

And what are these Xs? These are not of the corresponding B values which means, we

are adding A with the 1’s complement of B 1’s complement of B right because 1’s

complement means just not, but we 1 to, but we have to add 2’s complements right. So,

what we do, we also add a 1 to the carry input. So, effectively what is happening? I am

adding the 1’s complement of B from the top and an additional 1 I am adding us carry

input, which means it is becoming 2’s complement. So, whatever this sum is coming out

it is actually this same as A minus B. So, I am I mean able to carry out subtraction just by

taking the naught of the second number and by feeding 1 in the carry input it is as simple

as that right.

So, subtraction is very easy we do not need a separate subtract for that, we can use this

same addition hardware same addition circuit with small adjustments ok. Now let us see

whatever we have shown here how we can make it general. General means circuit, which

can do both addition and also subtraction. So, let us see how that circuit will look like.

(Refer Slide Time: 14:33)

The circuit will look like something like this, where this is our adder this can be ripple

carry adder let us say we have seen only one kind of adder so far, this can be any kind of

an adder let us say ripple carry adder. So, what we have doing, the first input A we are

applying to this adder, this second input actually what you are applying this is second

input B ok, but you are not applying B directly there are some XOR gates.

So, there are some exclusive or gates what you doing, let us say the i th bit B i and the

second input of this XOR gate, we are applying control input let us call it this add

subtract let us in short call it P let us call it P. So, how does XOR gate behave I talked

about it earlier. It says if P equal to 0 if the output is f if P equal to 0 the output is

nothing, but B i; but if P equal to 1 then the output becomes the naught of B i ok. So, it is

controlled inversion now let us see what happens.

(Refer Slide Time: 16:14)

Now, let us suppose this add subtract control input I have applied 0; 0 means this XOR

gates this Bs will pastrate.

So, I have A here I have B here coming directly and carry input is also 0. So, this is just

like addition normal addition and in the output will be getting A plus B right.

(Refer Slide Time: 16:44)

Now, suppose I apply add subtract control input 1. So, if I apply 1 what will happened?

First thing is that XOR gates will be doing the naught of each of the B is. So, A will be

applied here, but here it will be 1s complement of B 1s complement of B will come here

and carry input is also 1. So, basically 2’s complement will get added and what will get is

A minus B. So, we have a circuit with the control input which if I set it to 0 it will be

addition if I set it to 1 it will those subtraction ok. So, this is very general kind of thing

just the addition subtraction circuit.

(Refer Slide Time: 17:32)

Now, let us look at what is the drawback of this ripple carry adder. Drawback of the

ripple carry adder is that, the total delay we have seen earlier is propositional to n. So, as

we increase the number of bits the delay also increases these the degradation in

performance. But in reality we need to design adders that are pretty big 32 bits, 64 bit

adding addition not only that we want to make them very fast we want to carry out the

addition in a faster way.

So, how do you do this? Well one alternative maybe that if possible you generate all the

carry bits and parallel, why because in a ripple carry adder the main bottle neck was the

carry which was propagating sequentially from one stage to the next. So, somehow if

you can generate all the carry bits in parallel before the actual addition starts, then after

that all the additions can be done in parallel because we have generated all the carries

and we did not have to wait any further for the carries, to propagate. This is the basic

idea behind the next kind of adder that we propose that we shall discuss which is much

more efficient in terms of the speed in terms of the delay.

(Refer Slide Time: 19:05)

This is called carry look ahead adder. Let us see the basic idea what carry look ahead

adder is we have mention this in the previous slide also

That the propagation delay of ripple carry adder is proportional to n, but in a carry look

ahead adder we are generating the carry signals in parallel. This is notation which we use

to denote complexity, but you need not have to worry about the exact meaning of this,

this order n roughly indicates it is proportional to n and order 1 means it is constant.

So, in a ripple carry adder the total time taken is proportional to n. So, if you make

bigger adder the time increases, but in a carry look adder what you are saying that the

addition time is constant irrespective of the value of n. But the drawback is that hardware

complexity number of gates, size of gates, they will increase very rapidly with the value

of n. This actual limits the value of n to certain value beyond that a carry look ahead

adder can become very complex.

(Refer Slide Time: 20:38)

Let us see how it works. So, we look at the full adder again look at the ith stage of the

full adder. Just with respect to the ripple carry adder, you just imagine that in the ith

stage the inputs were address A i B i and the carry inputs C i and the outputs were sum S

i and the carry C i plus 1, which was going to the next stage. Now we define two

functions call carry generate and carry propagate.

Will in terms of the inputs A i and B i only these are may 2 input bits which I am trying

to add in the ith stage, first time calling carry generate. Generate means under what

conditions of A i and B i carry will always be generated. You see whenever A i is equal to

1 and B i is equal to 1 then irrespective of what my carry input is this carry out will

always be equal to 1 this C i plus 1 will always be equal to 1 because if this is 1 1, if

carry input is 0 then also there will be a carry. If carry 1 then also they will be carry.

So, I can express this as the AND function and of A and B if it is 1 1 then only it is 1 and

the second one is carry propagate. Carry propagate says that suppose there is an input

carry C i is 1. So, under what condition this 1 will propagate to the output; that means,

there will also be an output carry; propagate means under what conditions.

So, A i and B i this 1 will propagate. You see if it is a 1 1 then it is generating carry

anyway. But for propagation the two condition will be one of them will be 1 either 0 1 or

1 0. If it is 1 0 1 then also there will be a carry out if it is 1 1 0 then also they will be

carry out. So, this is the condition for carry propagation 0 1 and 1 0 is nothing, but the

exclusive are function carry out will be 1 if A 0 B 1 or A 1 B 0. So, you generate is your

and propagate is xor, this is this is what I have just now explained.

Now, the output carry C i plus 1, we can now generate or express in terms of P i and G i.

How?

(Refer Slide Time: 23:35)

We can simply write the carry output is either there is carry generated or the carry

propagation condition is true and C i is 1 there is a input carry. So, only under this

condition C i plus 1 will be 1 means either carry is generated this A i B i both are 1 or P i

is 1 means I mean exactly one of them are 1 and C i is also 1 right.

(Refer Slide Time: 24:08)

So, we have this relation now if you go and expanding this C i plus 1 equal to this. The C

i I can write like this multiply this out I get this, this C i minus 1 I can again write like

this I again multiply go and doing this to this you can go on continuing.

So, if you go on continuing. So, you go for I i minus 1 i minus 2 so on you go up to the

last stage. So, the last term in the last term what will happened? This P i P minus 1 it will

go on P i P i minus 1 so, on the last one will be P 0 and then you will be having C 0 this

will be the last plus something.

So, this whatever your getting you can check this you can express this in a concise form

like this C i plus 1 equal to G i will be there last term will be there, last term is this as I

said C 0 multiply with by the product of all the P 0’s Pi is then the intermediate terms,

there will be summation of some G k and then the products like you are said P 1 P to P i

minus 1 P and P 2 like this.

So, it will be something like this, but you really do not need to understand or

remembered this in that way.

(Refer Slide Time: 25:48)

So, what we want is that in terms of our design, suppose where trying to design a 4 bit

carry look ahead adder. So, just using this expressions that we have just now talked about

if we expand them like this same way. So, I am looking from the reverse way, the last

stage C 1 can be written as G 0 plus C 0, P 0 C 0 is already there you already know the

carry input. C 0 is the carry input of the last stage right C 0 and all the A B inputs are

given to you.

So, C 1 you can generate directly using this equation. Now C 2 if you just apply that

previous one that expansion C 2 will be like this, this you can verify C 3 will be like this

and C 4 will be like this. And this sums sum as we know sum is nothing, but the XOR of

the 3 inputs in a full adder.

Now, A 0 XOR B 0 is nothing, but the carry propagate function. So, propagate XOR of

the carry is nothing, but the sum. So, you can generate this sums like this. So, you see

what you need. So, in order to do this unit 4 AND2 means 2 input and AND2 refers to 2

input AND gates.

You see there is one here or here 2 input AND gates, 3 3 input AND gates one is here one

is here one is here, 2 4 input AND gates one is here one is here and 1 5 input AND gate it

is here. And similarly for to do this OR operations, you need 1 2 input OR for C 1 1 3

input OR for C 2, 1 4 input OR for C 3 and 1 5 input OR for C 4 and for sum you need 4

XOR 2 input XOR’s right.

Now, it is possible to simplify this expression little bit if you make an observation the

observation is us follows, you see C 3 is this ok. Now, in C 4 if you take consider this

part and if you take P 3 common, you see whatever remains G 2 plus G 1 P 2 G 0 P 1 P 2

C 0 P 0 P 1 P 2 is nothing, but this. So, you can write this as P 3 multiplied by C 3. So,

your expression will become much simpler.

(Refer Slide Time: 28:42)

You can write it like this straight away it becomes simpler and accordingly the size of the

gates also becomes smaller this 5 input and gate is no longer required at all. So, you are

cost reduces right.

(Refer Slide Time: 29:04)

So, here for this 4 bit carry look ahead adder, this expression whatever means we have

done here generated if you show the equivalent gate level realization it is sum what like

this.

So, I am assuming that already P i G i are already generated because P i if you recall G i

is nothing, but an and gate if you have A i and B i the two inputs, this will be G i and the

propagate function is XOR gate A i B i this is P i. So, I am assuming this P 1 P 2 P 3 all

these propagated and generate has already been generated by this, this can be done in

parallel all the stages can generate the P i and G i in parallel this have been generated,

then for the carry generation I need this circuit.

Well this is after minimization C 3 is being fed here right, but if you do not do

minimization it will be two levels only. So, without minimization the delay will be little

more because 2 again plus 2 4. But without minimization, this circuit requires delay of

twice delta and followed by or and for P i G i for G i it is twice delta for P i XOR it is

thrice delta.

So, this is more. So, the total delay will be 5 delta 2 delta to generate these 3 delta we

generate this and 2 delta for this circuit.

(Refer Slide Time: 30:49)

So, the overall picture looks like this, this is the this is 4 bit carry look ahead adder

scheme. So, you see the 4 bits of the numbers the two numbers A and B or fed to the G i

and P i generator. So, as I said G i is nothing, but an AND gate they will be 4 such AND

gates and P i is nothing, but an XOR gate there will be 4 such XOR gates and because

XOR gate has higher delay the delay of this stage will be 3 delta.

Then after you do this, just in the previous slide the diagram I showed the 4 bit carry

look at circuit will be generating the carries in parallel and because is a two level and or

circuit the delay is only two delta. Now, for generating the sum we do not need any full

adder anymore because as we see saw from the expression this SS are nothing, but this

propagate function XOR the carries. So, if you take P 0 XOR C 0, P 1 XOR C 1, P 2

XOR C 2 like this you can directly generate this sum and for XOR unit another 3 delta.

So, you see the total delay is 8 delta which is independent of the number of bits right.

But the only point to notice that this you can see from the expressions that have

generated earlier just let us go back this expressions. So, as you go on increasing number

of bits the complexity of the expression will also go on increasing, the size of the gates

number of gates will increase very rapidly this is the main drawback.

So, total time as I said will be 8 delta. So, with this we come to the end of this lecture,

where we have talked about two different kinds of parallel adders ripple carry adder and

also carry look ahead adder. So, we shall be continuing with our discussion in the next

lecture.

Thank you.

