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Functional Completeness

We know talk about something called Functional Completeness. The idea is like this you

see we have talked about so many different kinds of gates. Now, if I ask you a question

that what kind of gates will be sufficient for designing the circuit; do you need all the

different kinds of gates AND, OR, NOT, NAND, NOR exclusive, OR exclusive, NOR

everything or even if we have a small subset of gates that will be sufficient to design

everything or  every  circuit.  This  forms the notion of  functional  completeness  or  the

universal set of gates.

So, the title of this talk is functional completeness.
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Let us understand the notion. Now, in switching algebra whatever we have seen from the

basic definition, the operations defined are NOT AND and OR. What does this mean,

that any switching expression that you write is just a combination of AND OR and NOT

nothing else. So, if I have sufficient number of AND OR and NOT gates available with

me that should be enough to design any circuit I want.



So, this said AND OR NOT is by definition functionally complete because the definition

of  switching  algebra  says  that  with  respect  to  the  variables  and constants  this  three

operate basic operations are defined AND OR and NOT. So, if you have gates to perform

these three basic operations you can realize any switching expressions because switching

expressions are formed only using this AND OR and NOT operators. So, the first thing

we can say is that NOT AND and OR they are functionally complete.

So, let us take a very simple example say a switching expression f equal to A bar B and B

C bar D bar. So, you see that is consist of only not A is not C is not there are some AND

and there is a OR. So, if I want to realize it is very simple I need two AND gates, I need

to one OR gate, I connect them like this first one is A bar B. So, A I connect using a NOT

becomes A bar and B second was a B C bar D, B comes directly C comes through a NOT

C bar and D. This  is  the realization I  need only AND OR and NOT. So, given any

switching expression we have nothing, but AND OR and NOT in it. So, this set AND OR

NOT trivially is functionally complete such a set using which I can realize or implement

any function is said to be functionally complete, right.

So,  with this  notion let  us look at  what  other  gates  or  setup gates  they possess  this

property. But one thing we shall be assuming we shall be assuming that this AND OR

NOT is our basic set. So, if I say that some other gate x y z is also functionally complete

then you have to show that using x y z I can implement AND, I can implement OR and I

can also implement NOT.

So, if I can show that then only I can claim that x y z is also functionally complete fine.
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So, we shall show some examples now.
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The first and most important claim NAND gate; so you know; what are NAND gate is,

NAND gate symbolically is shown like this there are two inputs A B and the output let us

say if it is f. So, f is nothing, but the AND of the two NOT of that; this is how NAND is

defined. Now, what you claim is that NAND is functionally complete what does this

mean that if I have only NAND gates then I can build anything.



So, my circuit can consist of NAND gates only no other kind of gates are required ok.

So, NAND is some kind of an universal gate this is our claim let us see. So, as I said the

NAND function is given by NAND of A B is A and B NOT.

Now, if I want to show that this is functionally complete as I said I have to show that I

can realize AND OR and NOT using NAND; let us see how this is possible. NOT just

remember this expression NAND of two variable A B is just this A and B NOT. Let us

say I take a NAND gate there are two inputs I tie the inputs together and I apply a

variable A.
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So, what will be my output? It will be A and A bar this is nothing, but A bar which means

I can implement NOT then let us say AND well, if I have a NAND gate with inputs A

and B in the output suppose I connect a NOT gate; I already know how to build a NOT

gate I connect a NOT gate.

So, this will be NAND NOT of a NAND is nothing, but AND so, I an AND gate you see

just  algebraically  you  can  write  like  this  AND  is  A B.  So,  you  can  do  a  double

complementation A B bar of bar; now A B bar you can write A B bar and A B bar same

thing twice. So, this A B bar is implemented here this is A B bar and A B bar and A B bar

this  is  implemented  with  the  second  gate  this  is  basically  NOT, NOT of  that  this

implements AND so, you also have a AND.



Well OR is the slightly more complex structure see OR you can implement like this first

you need two NOT gates, you apply the two inputs here A and B. So, you have A bar and

B bar implemented then you connect these two to another NAND gate. So, what is say is

that this will implement OR.

So, the proof is this OR gate by De Morgan's theorem you can write like this A bar and B

bar of bar. Now, this A bar is nothing but A and A bar; B bar is nothing but B and B bar.

This A and A bar is implemented by this gate, B and B bar is implemented by this gate

and whole NAND is implemented by the 3rd gate. So, you can also implement OR.

So, this shows you that NAND gate is functionally complete and any kind of functions

switching expression can be realized using NAND gates alone because you have already

proved you can design a NOT gate, AND gate and OR gate using NAND only.
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So, continuing with the discussion NOR is also functionally complete just like NAND,

the NOR gate is also functionally complete. So, if you have only NOR gates then also

you can design and implement any kind of circuit. So, in a similar way to NAND let us

also try to proof that NOR gate is functionally complete let see.

So, the first thing is that the NOR function is nothing, but this A or B NOT of that, now

realization of basic gates well in a manner similar to NAND, I am showing here and the

corresponding circuits I am showing one by one. First NOT, you take a NOR gate tie the



two inputs together just like a NAND if we apply A it will be A or A bar just this A or A

means only A. So, the output will be A bar.

So, NOT can be implemented first look at OR because OR is easier you take a NOR gate

you apply A and B. So, what you had get here you get NOR of that A plus B bar; now

you connect a NOT, NOT you already know how to do a NOT. So, you will be getting

finally OR A plus B so, OR can be implemented. Now, AND structure is again similar to

OR for a NAND. So, what you do you start with two NOT gates with the two inputs

connected together A and B. So, here you have A bar, here you have B bar then you

connect them together using another NOR gate you will be getting A and B.

The proof again goes like there from A B by De Morgan's law you can write like this A

bar or B bar and this A bar you can write A or A bar B bar you can write B or B bar. This

A bar you are implementing by this gate, B bar your implementing by this gate then

finally, you are taking NOR of A bar and B bar 3rd gate right.

So,  in  a  manner  similar  to  a  NAND we have also  shown NOR is  also  functionally

complete. So, if you are given only NOR gate we can implement any circuit that you

want to; let us look at some other functionally complete sets also.

(Refer Slide Time: 12:13)

Well this is quite simple to justify, I am saying that this said suppose I do not have OR

gates only AND and NOT.



I am saying this is also functionally complete well what is my justification I have AND

gate, I have NOT gate ok. Now, if I connect them together what gate do I get this is

equivalent to a NAND gate. Now, now we have we have already proved that NAND gate

is functionally complete, now because I can implement a NAND gate using AND and

NOT.

So, this will also be a functionally complete AND NOT is also functionally complete ok,

simple to say because we have already proved NAND is functionally complete and using

AND and NOT I can built a NAND right. So, the justification is very simple.
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So, in a similar way you can also say that OR and NOT is functionally complete because

you have an OR gate, you have an NOT gate connect them together you get a NOR gate.

Now, NOR gate is functionally complete this we have already proved. So, if I have only

OR and NOT. So, we can build a NOR using that which is known to be functionally

complete so, this will also be functionally complete. So, we have seen means other than

AND OR NOT four sets of gates one is NAND only, NOR only AND NOT OR NOT ok.

Now, these gates  are  functionally  complete  means without  any external  means other

kinds of inputs because you can realize any function just by using these gates.
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So, what I mean here is I will be explaining that with the next example. Here what you

are saying is there is another set we are talking about we are talking about AND EXOR;

well EXOR gate you already know what an EXOR gate is. EXOR gate symbolically is

shown like this it two inputs are A B if the output is f well sometimes the EXOR is

express symbolically  written like this  A EXOR B is  written as A bar  B or A B bar.

Because the definition of EXOR I gave earlier  is EXOR will  be 1 if odd number of

inputs are 1; odd number means with respect to A B if A is 0, B is 1 or A is 1, B is 0 odd

means one single 1 that is odd so, A bar B A B bar right.

Now, here what you saying that only AND EXOR is not sufficient, we also need the

constant value 1. Why? The reason is very simple suppose I have an EXOR gate, EXOR

function already I have shown what is EXOR function. Let us say to the first input I

apply A, to the second input I apply a constant 1. So, what will be my output just follow

this rule A bar B, B is here 1 OR A B bar; B bar will be 0 bar of 1. So, second term will

become 0 only the first term will remain which is A bar, which means an exclusive OR

gate with one of its input as 1 is equivalent to a NOT gate.

So, I can built a NOT gate using an exclusive OR gate and the constant 1 and I already

have  AND  gate  and  we  have  already  shown  that  AND  and  NOT  are  functionally

complete. So, I have AND and I also have seen how to build a NOT. So, this will also be

functionally complete right. So, the justification is fairly straight forward.
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This is exactly that is said that you can implement a NOT by setting the 2nd input to 1

and we already have shown earlier NOT and AND is functionally complete.
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Similarly, instead of AND you can go for OR the logic is similar. So, I am not going into

detail because NOT we have seen exclusive OR with a 1, you can implement a NOT and

this OR gate is already there OR and NOT we have already shown earlier this is already

functionally complete.



Therefore OR, EXOR, 1 will also be a functionally complete set. So, these are the things

we have to remember. So, if you are designing any circuit and someone gives you some

gates to design you can check whether those gates are sufficient in terms of functional

completeness. If there functional complete then you know that well I can design any

function using those gates only ok, all right.
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Let us now look at there are slightly different kind of a functional block not exactly a

gate, well we had talked about the multiplexer earlier. So, we considered a 2 line to 1 line

multiplexer. So, how does a 2 line to 1 line multiplexer look like; it is the blocks where

there are two inputs A and B. There is a select input S and there is an output let us say f,

this is how a multiplexer look like.

So, how does it work if the select input is 0 then the output will be equal to A, the first

input will  be copied to the output, but if S equal to 1 then the second input will  be

copied. So, it is like a controlled switch depending on what I apply to S either A switched

or  B switched ok.  Let  see that  whether  this  is  functional  here what  means we have

mentioned nothing that I need both constant 0 and constant 1 to make it functionally

complete.

So, talking about the function just you see I can directly write down this expression. The

output function of a multiplexer is A S bar B plus S bar for what is the meaning you see

if S is 0 output is A, S is 0 means S bar and A, S bar and A. S is 1 means S and B, S and



B you can directly write an expression like this ok, this is what a multiplexer is. Now,

realization of the other gates can be followed like this just look at these scenarios; first

NOT, let us try to build a not.

So, what we are saying that the first two inputs I apply 1 and 0 like in this multiplexer I

apply a 1 here, I apply a 0 here let us say and to the select line third-one is a select line,

select  line I  apply the variable  A. So, if  I  substitute  1 0 and A in this  expression it

becomes A that is 1 A bar plus B B is the second-one 0 A.

If you simplify this is only A bar which means I can implement NOT, but I require a

constant 1 and also a constant 0. I can also implement an AND how I can apply this input

A in the first-one 0 in the second-one and I already know how to implement a NOT.

So, suppose the other input I do a NOT and I apply B bar to the select line A 0 and B bar

then if I just substitute the values in this expression A bar of this becomes B plus second-

one 0. So, this will become 0 and A B I have implement AND. So, I can implement a

NOT and an AND and you already have seen earlier that NOT and AND are functionally

complete. Therefore, this 2 to 1 multiplexer is also functionally complete provided you

have the constants 0 and 1 available with us right.
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Now,  let  us  look  at  some  interesting  observations.  So,  when  you  design  a  circuit

sometimes we need to transform a circuit from one form to another, change the kind of



gates that you have. So, let us look at somehow the very common transformations that

we carry out.

First observation that you make is very important it says that two level AND OR circuit

is equivalent to a two level NAND-NAND circuit. So, what I mean is that if I have a two

level circuit AND OR like this; this observation says this will be equivalent to keep the

circuit structure the same just replace all the gates by NAND. So, function will remain

the same. You keep the inputs A B C D has as same, here also it will be A B C D;

suppose the function was f here the same function will remain f here. Now, the proof

comes from De Morgan's law just you see if I have this A B or C this function f, this

realizes  what A B or C D. Now, I can do a double complementation complement  of

complement in two steps let us say.

So, the inner one I can apply De Morgan's law something or something bar what does

this  mean;  this  something will  be NOT plus will  become AND. This something will

become NOT and then whole thing I have bar. See AB bar is nothing, but NAND of A B

CD bar is nothing but AND of CD and something and something bar is nothing, but

NAND of that something and something. So, straight away these two are equivalent.

So, if I have a two level AND OR circuit  just blindly I can replace all  the gates by

NAND gates, not necessary two gates any number of gates can be there in the first level

because De Morgan’s law can be extended to any number of inputs right.
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This is one very important observation you should remember and a similar observation

exists for OR AND circuit. Two level OR AND circuit is equivalent to NOR-NOR. So,

here also the idea is very similar I have a two level OR AND circuit like this.

So, here also lets say the inputs are A B C D what I say this is equivalent to a stimulus

circuit where all the gates are made NOR. So, again this follows from De Morgan's law

because if you say the function output is f. So, what is f f will be A or B and C or D. So,

if  you  do  it  double  complementation  again  a  complementation  then  the  inner  one

something and something bar  what  will  be that  something bar or this  something bar

whole of bar.

So, this means this A plus B bar means this NOR C plus D bar means this NOR and

whole thing means this NOR. So, similarly two level OR AND you can directly replace

by two level circuit with all NOR gates right. This is very simple.
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Now, in general if you have means any circuit not necessarily two level right when is it

can be a multi level circuit. I mean if you apply De Morgan's law in a suitable way and

also if you use some basic transformation rules then you can convert any multi level

circuit consisting of AND OR and NOT gates using NAND gates only.

Well, I shall be illustrated in with some examples well similarly, we can do it for NOR

gates only, but I am not giving those examples you can try them out yourselves, but what



examples I will be giving is given any arbitrary circuit I can convert them into NAND

gates, it  can be multi  level not necessarily two level.  But some basic rules are being

followed here.

Let  us  say  if  I  have  an  OR  gate  with  NOT  gates  in  the  input,  well  sometimes

symbolically we write it like this we show it as small bubbles in the input, bubble means

NOT these are same thing. So, if you see what this functionally means A B means this

will be A bar B bar and OR of that A bar or B bar. So, what is A bar or B bar according to

De Morgan’s law it is nothing, but A B bar which means this is NAND.

So, any OR gate with a not gates in the input is equivalent to a NAND this you should

remember this is nothing, but NAND in some book we will find NAND gates are shown

like this because they are equivalent right.

Let  us now take some examples to show that  how this  kind of transmissions can be

carried out; just a second.
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Let us take a simple example. Let us say I have a circuit like this. So, I want to convert it

into a pure NAND-NAND circuit it is a multi level circuit. So, there is a AND OR and

also there is another AND let us say circuit is like this. So, what are the steps? The first

step is that if we look at this part of the circuit separately this part of the circuit, this is

like a two level circuit AND OR and two level circuit you already know that we can



converted into NAND-NAND blindly because they have already shown that these are

equivalent.

Then lastly we have an AND gate here now, what is an AND gate we can write it like

this;  these  are  already  NAND we have  got  in  NAND  and  this  AND  gate  you  can

implement  using  a  NAND  gate  followed  by  a  NOT  gate.  So,  you  know  how  to

implement a NOT using NAND.

So, you see you have obtained a all NAND implementation of the original circuit right

simple.
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Let us look at another example which we will involve some OR operations also; suppose

I have a circuit like this with a NOT gate here this goes to an AND. There is an OR gate

here output of the OR goes here, there is another OR gate and there is a NOT; let us take

a circuit like this.

So, step by step let us go through the transformation. First is if you look at these two

gates and followed by NOT this is straight forward it is a NAND. You replace it by a

NAND and you have an OR gate here. Now, you already know how to implement a OR

gate using NAND gates follow that rule; you have a NOT, another NOT, you have a

NAND. This is NOR, this NOR gate and both of these will be going to the input of this



AND gate,  this  AND gate and then you have the final  OR gate and the other  input

coming through a NOT.

So, the first two part you have taken care of converted them to all NANDS’s now, let us

look at the rest. This is a this is an AND gate. So, what you can do I am just showing the

equivalent circuit here this circuit is already there, I am also drawing this part; this part is

there and they are going to the input of this AND gate ok.

Now, what I am saying is that let us make this a NAND gate followed by a NOT gate.

Let us say a NOT gate this is equivalent to AND and on the other input also I have NOT

gate which goes to an OR gate. Now, we have already shown that a NOR gate with the

inputs NOT is equivalent to a NAND gate.

So, finally, you have a circuit where you have this NAND gate this two NOT gates using

NAND, another NAND they are connected to another NAND and finally, they are going

to the last NAND with the other input is straightaway coming here. So, these two circuits

are equivalent.

So, you see just by knowing some of the rules that you have already know and this kind

of transmissions that I just talked about some time back you can convert any arbitrary

circuit using systematic methods using NAND gates only. Similarly, you can do it for

NOR gates also the rules are pretty similar.
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So, with this we come to the end of this lecture. Now, in our next lectures we shall be

looking  at  some  systematic  ways  of  minimizing  functions.  So,  far  we  talked  about

algebraic methods and just by applying rules by using Ad hoc methods we are try to

minimize; means as I said if you remember the rules correctly to be easier for you. But if

you do not remember the rules you may not be able to minimize in an effective way.

So, we shall next look at some of the more systematic ways to minimize and analyze

switching functions.

Thank you.


