
Blockchains Architecture, Design and Use Cases
Prof. Sandip Chakraborty

Prof. Praveen Jayachandran
Department of Computer Science and Engineering

Indian Institute of Technology, Kharagpur
IBM Research, India

Lecture – 28
Comparing Ecosystems

Hello, everyone. Welcome back to our Blockchains course. We are now looking at

different blockchain platforms. This lecture and the next one is going to be we are going

to be discussing Corda. This is the first part of Corda.

(Refer Slide Time: 00:27)

Corda is really a permissioned blockchain network or I should not really say it is a

blockchain because I should call it a distributed ledger, but there is not a blockchain in

Corda. For instance, no there is not a notion of fully ordered transactions that are all hash

chained together. So, there is no really a blockchain as such, but it is a distributed ledger

with consensus. So, we will talk about how that works.

And Corda has been designed specifically considering the requirements of financial

services use cases. So, the now bunch of banks have come together to form a consortium

called R3 and R3 leads the development of Corda and also the governance around the

Corda development itself right. It is specifically designed considering data privacy as a

first class requirement and Corda was open sourced in November, 2016 and has been

seeing a good amount of progress in terms of capabilities over the last year and a half.

There is R3 is coming out with an enterprise version of Corda and it is compatible with

the open source version with some improvements, right. So, they are promising higher

availability and performance, enhanced security using Intel SGX and the notion of

enclaves for secure execution and also integration with the hardware security modules

for key management. They are also bringing in a modular database. So, we can use

different relational databases along with Corda and it also brings an integration with

LDAP and active directory.

R3, the consortium of financial institutions has partnered with Microsoft to offer Corda

on Microsoft Azure the on cloud. It is also available on AWS market place. So, it is now

available for you to instantiate on a public cloud and try it out.

(Refer Slide Time: 02:32)

So, let us look at some of the concepts, right. So, I am going to talk about some of the

higher level concept and I will get into some of the details after that technical details

itself. So, as a foundational concept R3 is founders and encoders creators they felt that

with financial services use cases legal agreements are a critical part of those use cases.

So, this could be agreements between banks on how they are going to operate on

assumption of liability and risk. It could be regulatory a give agreements maybe between

a regulator and a bank. So, they want a associate smart contracts with legal agreements.

So, this is a fundamentally philosophically different notion from Ethereum like we

discussed in the previous lectures. Ethereum as I mentioned considered code is the law,

right. But, in Corda they consider the code and the legal agreement as to distinct aspects

the code is something that tries to support what is mentioned in the legal agreement, but

is not is distinct from the legal agreement. So, the legal agreement is what is going to be

you know we acceptable in a court of law, but the code the smart contract code and the

distributed ledger information can support a legal agreement, but it is not really legally

admissible.

So, elements of a legal agreement; so, this you can think of it as it is going to be captured

as a document it can be stored together with the smart contract. So, there is a they that

could be this is the optional, but typically there is a legal agreement that goes together

with a with a smart contract, whether it is a bond issuance or anything else right that you

might see you know or the stock market exchange. Any of those it is there are legal

agreements that are associated with the smart contracts.

So, the parties of the agreement are specified. The time window is for when the contract

is valid. So, what is it is valid before a particular expiry date or until a particular maturity

date maybe there is an agreement for let us say a term deposit so, there is a maturity date

for it or a or a duration a period of time. There could be external facts and conditions that

govern the contract and these facts may be provided by oracles. Oracles are also a first

class entity in Corda. So, we will talk about that in the next lecture not this one.

And, these external facts can be various right it could be particular interest rates that are

fixed, it could be a share price that changes over time, but it is it is fixed for all users at

any given point of time, it could be foreign exchange conversion there is many different

notions of external facts that might influence a contract. And, these external facts are

provided to the contract through trusted oracles that could be witnesses. There are terms

and conditions of the contract these this could be in legal prose and there could always

be supporting documents and attachments along with the legal agreement.

And, you can actually track the lifecycle of the agreement itself from creation to

amendment to actual execution of the agreement to an exit, right, where the agreement is

no longer valid, right. So, all of this is then captured as a legal agreement and goes

together with a smart contract.

(Refer Slide Time: 06:01)

So, what are some of the key design principles of Corda itself? So, the first very

fundamental and a very unique principles of Corda is that it does not have any global

broadcast. So, if you look at any other blockchain platform there is typically an exchange

of information it could be transactions typically that are spread across the network and

all the network participants will get that transaction information. So, that is a global

broadcast inherently part of every blockchain platform.

Corda in stock contrast, because they value privacy and they want a build that in as a

first class first class construct. There is no global broadcast. So, all the message exchange

are peer to peer. So, you can only point to another peer and send a message to them you

cannot send a message across to the entire network and that is also fundamental because

you do not want to send messages you want to keep messages private and only

authorized entities should be recipients of that message.

No blockchain measure mentioned. So, it is going to be a distributed ledger. So, every

node will maintain its own ledger and in some sense the global distributed ledger is a

union of all these ledgers. So, we will see how that we will talk about how that works. It

does use a UTXO state model state machine model and it does have a way to verify that

there are you are actually trying to use unspent transactions and in your trying to double

spend in any way.

It is not so, it is not an account base model. So, Fabric and Ethereum use an account base

model where there are accounts and accounts can store arbitrary state whereas, here there

is a UTXO model and you are only going to be transacting with unspent transaction. It is

a permission network. So, it is going to have identity issuance on the network that is

trusted that is issued by our trusted Door Man service.

We will briefly talk about that as well all communication between nodes is direct as I

mentioned it has to be addressed to a particular recipient it is encrypted using TLS. So, it

is secure. So, it is a secure message exchange, it is sent over AMQP, right there are no

global broadcasts. The ledger itself is a relational database. So, the smart contract can

invoke sequel queries to read and write from the database which is the ledger, we will

talk about details of how the ledger itself is composed.

And, the smart contract itself the is based on any JVM-based language you can use your

contract in any JVM-based language are typically it is Kotlin right some of the contracts

they have written are in Kotlin and the virtual machine like Ethereum has the Ethereum

virtual machine the contracts run in a JVM based virtual machine. So, it is a java virtual

machine on which these contracts run. So, that is the some of the key design principle.

(Refer Slide Time: 09:07)

Corda is of course, a peer to peer network where we can there are multiple entities of this

network let us say Alice Bob and Charlie these could be banks it could be financial

institutions could be others who are part of this Corda network. There are other entities

like notaries and oracles. These are in some ways trusted entities, we will talk about the

function of notaries and oracles in the next lecture, once we understand how the Corda

system the basic set of transactions and contracts work in Corda right.

So, all the message exchanges between peers as well as notaries and oracles all of them

happen over TLS-encrypted messages sent over AMQP. There is as I mentioned there is

a doorman service. The doorman service is the one that is going to do some form of KYC

so, know your customer. They will make sure these are legitimate entities and they

require access into this network they need to be part of this Corda network.

And, the doorman once it is approved this entity for access you then issues an identity

based on a TLS and this is from a permissioning service. So, it then issues this identity

and the permissioning service creates the cert for the participating entities. So, this is

how the permissioning itself works. There is a doorman service providing KYC and there

is the permission service that issues the certificate itself once the doorman service enrolls

it. There is a network map service that maps entities to their peer IP addresses as well as

their identity.

So, this is how people will know which entities are part of the system, how do I send a

message to another peer, what is the IP address on which I should send it, what is the that

certificate that I should address it by. So, all that is captured in a network map service

that is maintained by the network and anyone can query it. So, the Corda and node itself

as I mentioned runs on java virtual machine all the state information is and is stored in an

RDBMS, it is a relational database. There is a AMQP messaging service that is how peer

to peer message exchanges happen. Then there could be one or more Corda services and

then Corda applications right that are running in this in a single node.

(Refer Slide Time: 11:29)

Apart from just a private permissioned network R3 or the Corda community envisions

are really a network of networks to evolve. So, there could be for instance a network of

entities of working on a shared KYC application there could be another network of

entities working on bank guarantees another network for trade finance and so on, right.

These could be overlapping networks. So, there could be common entities in this

network it is entirely possible.

But, the Corda R3 really envisions all of these blockchain networks, a independent

blockchain networks to actually be interacting with one another. They might be

leveraging the same oracles for trusted information, they could be using the same

notaries for instance, there could be overlap in some of these functions, but apart these

all of these networks are connected in a global interoperability zone. So, this global

interoperability zone is really a then gets you the notion of a public network.

So, this connection between multiple private networks in a globally shared network gives

you both the privacy of permission networks as well as the interoperability across

networks. So, I want to do something on KYC and then I want to issue a bank guarantee.

So, all of these things can be interoperable and part of a globally shared network.

It allows also each node operates within a particular zone and it can transact with other

nodes in that zone, right. So, and so, they the Global Corda Network allows assets to

flow across from one zone to another. So, asset can be created in one zone and then it can

be transferred over to another zone. So, those sorts of interoperability functions will

become possible with this global interoperability zone.

So, Corda 3.0 delivered a stable protocol for this and the future versions of Corda will be

compatible with this. So, this really allows multiple networks to be interoperable and

assets to be taken from one network to another network and nodes to really transact

across these different zones, ok.

(Refer Slide Time: 13:50)

Now, coming to the transaction model itself, right. So, so Corda uses UTXO model how

it works is each time a new transaction is created it has a reference back to a previous

transaction that is unspent. And then the previous once a new transaction is created the

previous transaction is marked as historic the historic basically is a synonymous with

being consumed or that transaction being spent. And, this provides a full audit trail. So,

because of these links from one state to another you can have a full audit trail of all of

these agreements over a period of time.

So, for instance if there is your maintaining balance in some sense Alice’s balance. So,

you could have a transaction where Alice pays Bobs Alice borrows money from Bob and

then Alice may repay a part of that money. So, all of these are recorded as independent

transactions and as a new transaction gets added the previous transaction that it is refers

to is marked as spender. This is very similar to the UTXO model except that each of

these transactions is going to hold state.

The states apart from unlike bitcoin although this utxo unlike bitcoin, where bitcoin only

refers to bitcoin input and bitcoin output here you can really in your state information

you can actually have arbitrary data. So, this can really refer to maybe a table in your

database and have data pertaining to different rows and columns of that table. So,

arbitrary data can be captured as part of state, but as in when state gets modified previous

states are linked and they are marked as historic.

So, that way states once they are historic they are immutable and represent a shared fact.

So, as in when states get created they are all immutable. So, again it is a append only log

of transactions, but it is just that it is not a globally synchronized log it is the all nodes

are not maintaining a single blockchain in some sense.

So, this is just a pictorial view of how UTXO works. This is inputs and outputs again,

but just that inputs and output can have arbitrary data. Now, coming to the storage aspect

itself right each node in the network maintains a vaults, right. It is called a vaults and it is

really a database that tracks all the data that that node is privative, right. So, it has all the

current and historic states for that node.

(Refer Slide Time: 16:31)

And, different nodes can actually have different view of state information. So, there

could be data that is shared between three parties only those three will hold it there could

be other data that is hold by just two of them only those two hold it the third party does

not hold it and so on.

So, these vaults are currently based on H2 embedded sequel engine and they are also

planning to support JDBC, have not looked recently whether they have actually added

that, but I believe they can support any relational database. The current state of the ledger

comprises of all the unconsumed transactions. So, is very similar to UTXO. So, you can

have a sequence of these transactions, the unconsumed state is the current state rest of it

is historic state.

Corda allows for fine-grained access control on the state sequence. So, I can say who

gets access to which state information I can do that in a fine grained manner. Fabric in

contrast allows this data partitioning through the notion of channels and collections. In

Corda just the way the message passing works and how the transactions are shared we

will see how that works that itself gives you a very strong notion of privacy, right. Only

the participants of a transaction will ever see the transaction and the data within it.

So, then how does a how does the distributed ledger work will be the next couple of

slides.

(Refer Slide Time: 17:54)

So, the Corda ledger; so, let us look at this right. So, let us say Alice is one node and bob

is another node. So, there are certain set of shared facts between Alice and Bob. So, in

this case 1 and 7 are shared facts between Alice and Bob. So, both of them will store

their, so; store them on their respective ledgers. So, Alice stores 1 and 7. So, the values

the facts of them are there. Apart from this Alice might have some state that is not known

to Bob and it will store it on it is ledger; likewise Bob has some state that is not known to

Alice. So, that is 5 and 6 that is all that store in Bobs ledger, but not on Alice’s. So, the

vault for each peer is distinct from the other peers and it has only the data that is private

to that node or that node is aware of and again there is no global broadcast.

So, no node will know the universal or the full superset of all of this information. You

want to look at it as the global state of the network itself you can think of it as the global

state of the network or all the facts known by the network is really the union of all the

facts known by each entity, right. So, if you put that all together there will be the global

knowledge, but no one entity maintains that. So, all facts are split on and shared only by

the parties private to that fact or that transaction. So, has no notion of accounts, it is only

facts and information that stored amongst parties.

Transaction ordering is enforced by hash functions based on previous states. So, in some

sense this is a this is not a total ordering there is only a partially partial ordering between

transactions. So, you know that one transaction consumed information from a previous

transaction. So, there is a link between those two. So, there is a dependency and an

ordering but, there are there could be transactions where there is no ordering right or at

least at the level of a single peer they might be parallel transactions.

Consensus allows you identify essentially the double spending problem and determines

whether a transaction is valid or not. So, we will discuss consensus and it all because of

the fact that we have a full sequence of the provenance of everything where has

happened auditability is also achieved, right. You can get a full history of all activity that

is recorded on each peer.

So, this is again a fundamental difference fabric Ethereum one of those things they all are

based on a fabric and all other permission networks are based on a broadcast architecture

when I said Ethereum I meant the permissions to assume of Ethereum. Corda takes a

very drastic drastically different view right it is only need to know only pointed

communication there is no global blockchain at all.

(Refer Slide Time: 20:42)

Now, coming to contracts in Corda. So, contracts as I mentioned can be written in any

JVM language. So, Java, Kotlin there are many others and it is executed in the sandbox

which is a modified version of the java virtual machine and like I mentioned before there

is contract code and associated with that contract code you can also associate a legal

agreement with it and the contract code is going to refer to some state information and

some participles, right.

So, each state the states think of it as a record that is going to be paired with a contract.

So, a state cannot be manipulated by multiple contracts. Contract code has to be

deterministic that is needed for any kind of a distributed ledger, but it can reference

external information through oracles. So, we will talk about that in the next lecture.

So, the sandbox because it is it is a restricted environment it guarantees determinism. So,

that is why that is the modified version of JVM. So, it does not permit any non

determinism or randomness to get in. The determinism also ensures that the contract

code determines the same result across all the peers. So, each contract is going to be at

transaction is going to be executed independently by multiple peers, but the determinism

is ensured because the code will always return the same result.

So, the contract is only deployed on the peers that are party to an agreement. So, the

other peers will not even know the existence of this contract. The transaction can have

multiple states. So, I mentioned the code refers to multiple states. So, it can have

multiple states that refer to multiple contracts, right. So, one transaction can actually

operate on multiple contracts and each contract can have multiple states. For instance

you could like here is an example right you can have a transaction for swap for swapping

a bond for cash you are selling a bond. You are getting cash in return. So, these could be

different states that are manipulated by the transaction.

So, I mentioned about this code is not law. So, I would not repeat it again here.

(Refer Slide Time: 22:45)

So, coming to what transactions look like. So, transactions reference zero or more output

states and creates you sorry reference zero or more input states and create zero or more

output states. This is very similar to bitcoin except that state can have a arbitrary

information. Newly created output states mark the input states as historic. There are three

broad types of exchanges or transactions that are that are specified by Corda. So, these

are issuances updates and exists.

So, let us just work through an example transaction flow. So, it could be an issuance

transaction where a new state is created from nothing, right. So, you can say only these

entities can create an issuance transactions as fine grained access control. So, only maybe

a bank can issue let us say a financial instrument. So, then that issuance is created and it

is recorded on the blockchain a new state is created and then the next one may be an

update. So, the state can go from S 0 to S 1 and then that will mark the previous S 0 as

historic. So, that is again just basic use UTXO.

And finally, you could have an exit transaction, where an input state is basically expired

or matured basically it is a financial instrument that is now no longer valid. So, you can

exit. So, that is also possible.

(Refer Slide Time: 24:05)

Now, transactions can split and merge states. So, note that Corda does not have an

inherent crypto currency, but you can model cash or bonds or other financial instruments

as states. So, the cash itself can be modeled as a state and it can map from let us say one

cash state to another cash state. So, cash it can go from cash 0 to cash 1 in exchange for

let us say a bond which goes from 1 one to bond 2. So, these are captured.

So, this is again a very similar UTXO example. You have split 10 USD into 8 USD in 2

USD and you have going to consume those in one or more transactions. And, this 20

USD can be pointing to a previous transaction altogether. So, this is similar a split and

merge representing fungible assets very simpler to how bitcoin is a fungible asset.

(Refer Slide Time: 24:59)

So, let us just work through an example of our transaction and contract execution will

work. So, let us. So, let us say this is a transaction between two parties Alice and Bob,

right. Alice first execute the transaction it calculates the state value. So, it is calculate

state 2 using a flow. So, we will talk about transaction flows in just a little bit um. So, it

going is going to execute this logic and it is going to submit a transaction. So, that is the

first step.

So, second step once the contract gets this transaction from Alice it is going to first verify

whether this is a valid transaction and the state change you will check whether all

conditions or preconditions for this transaction are satisfied and these preconditions are

may are specified in what is called a at a flow. So, this is a we so, we will come to the

details of the flow itself, but think that there is a contract and there are for each step of

the contract there are preconditions and we the preconditions will specify who needs to

sign perhaps, what others information needs to be valid maybe it refers to an oracle, an

external piece of information all of that is validated and only if all the preconditions are

met will the contract be will the contract execution be valid, right. So, that now includes

Alice’s signature and that signature is verified. So, that is the contract part.

The third thing is now Bob might receive this as a peer to peer message. So, it receives

this message from Alice and then it will check again it can then execute other validation

logic to see whether Bob is with signing this transaction and this logic can be some

external information. So, Bob can use information private to just Bob itself and

determine whether it wants to sign this and let us say it agrees to sign it then Bob will

also sign this thing and the contract can verify that all again all the conditions are met

and this is actually a valid transaction.

Now, once this fully goes through then the transaction is recorded by both Alice and Bob

that now this is find out.

(Refer Slide Time: 27:11)

Now, coming to the notion of finality; first there are proposals that are made. So, there is

a current state and a desired state. So, Alice creates this desired state submits it to sorry it

is goes this way this time. So, submits it to the contract, but to commit the transaction it

must be signed by all the peers all the required peers. So, Alice proposes and it is it is

signed by her peer not. So, there is signature of Alice that is added to this desired state

and then it is sent to Bob and then bob can then figure out whether they want to Bob also

sign it and then add Bob’s signature.

And, then finally, once the contract verification validation passes it is also determined

that this state is unique this the input states are not consumed in other concurrent

transactions once it is determined to be unique that is through we will talk about how that

uniqueness is achieved uniqueness consensus and then that is recorded as final. So, that

is once it is recorded and these states are marked historic is when transaction finality is

reached.

So, we still need to see what is this validation there is happening, how is uniqueness

achieved right we will go through some of those notions.

(Refer Slide Time: 28:28)

So, the digital signatures are the ones that are giving you immutability and authenticity.

So, you know that. In fact, Alice was the one that signed it. No one has modified it since

the time Alice signed it. So, when an auditor comes and looks at this they knows, they

know exactly what has happened they know that none of these could have been altered

because if they were altered the signatures would not match, right.

So, through these digital signatures you can get the mutability and authenticity. But,

these chain of blocks are only this chain of sorry state information is only available with

Alice and Bob it is not available universally with other nodes, that is the no blockchain

aspect, right. So, the state sequences lead to almost like a DAG, right. Each node is going

to maintain this DAG of state sequences each state could be referring to past state and it

is really a DAG, ok.

(Refer Slide Time: 29:21)

So, we will pass at this stage for the first lecture on Corda. So, in the next lecture we are

going to look at how the consensus works, how notaries work, oracles as a first class

citizen in Corda so, some of the other aspects. So, we have just looked at what a

transaction looks like, what the ledger is the fact that ledgers are distinct states stored by

peers and with some overlap with the state shared by two peers will be on both ledgers,

but there could be state that is that is in one peer and not in the other peer, right. So, it is

really a distributed ledger it is not really a blockchain.

So, here in the in our fund reading section there is links to the Corda interactive white

paper just a that is just a very high level document maybe 10 pages or so, I think. The

technical white paper is much long that is about 60 pages, but it is good information it is

it tells you it gives you good motivating set of it is motivating article and why they chose

to design it this way, why they feel that blockchains as such are not very good for

privacy and you really need this kind of a distributed ledger or where transactions are

sent to parties on a need to know basis and others will not have even any semblance of

these transactions having happened, ok.

So, with that let us move to the next part of Corda. I will see you soon at the next lecture.

