
Blockchains Architecture, Design and Use Cases
Prof. Sandip Chakraborty

Prof. Praveen Jayachandran
Department of Computer Science and Engineering

IBM Research.
Indian Institute of Technology, Kharagpur

Lecture – 56
Comparing Ecosystems – Ethereum

Hello everyone, welcome back we are now into the last week of lectures for this course

and I am very glad that you have stuck on with this course for this long and I am hoping

that you are learning a good bit from this course. So, this week is going, to be about other

alternate platforms. So, we have looked at hyper ledger fabric and hyper ledger composer

earlier in this course, but we are going to look at a few other platforms, this week we are

going to look at specifically Ethereum, quorum and corda.

So, I am not going to spend too much time on these, just one lecture each corda will

spend a little more time, 2 lectures on corda. So, we look at some of these platforms,

some of their pros and cons different design way ways in which they are defining or

designing primitives for smart contract use and we will see what their, what some of that

advantages disadvantages are.

(Refer Slide Time: 01:04)

So, this lecture is we are going to talk about Ethereum. So, Ethereum is is one of the

hottest blockchain platforms. Today, it was founded by Vitalik Buterin and it was back in

2013 and he felts that the bitcoin scripting language was way to restrictive for smart

contracts. So, it was primarily intended as a means for executing smart contracts in a

decentralized fashion. So, that is how it started and in even today that is one of the

biggest use cases, uses of Ethereum.

The smart contracts are known as daps or decentralized application and they run on a

Ethereum virtual machine. So, we will see some details of this, Ethereum itself is an

overloaded term right. So, it refers to the public network is similar to bitcoin, there is a

public Ethereum network that runs and there is a set of peers that run this network. It can

also be a private permission version of Ethereum.

So, it is possible to take the Ethereum codebase, run it as a private network or a

permission network with just a few nodes. So, that is also possible and Ethereum is

referred to it to in that way also, not just a public network, it can also be a permission

network and it is also the open source software behind Ethereum is also referred to as

Ethereum. So, it is really over overloaded in that sense.

It does have a native crypto currency called ether similar to bitcoin rate. So, bitcoin is

also an overloaded overloaded term Ethereum has ether as native crypto currency and

today as I checked just a few days back, there are the main net for Ethereum has over

16000 nodes and I am not sure, how many are really full nodes. But there are a or very

large number of nodes, now running the public Ethereum network and the average block

formation time is about 17 seconds, which is significantly better than bitcoin, which is

about 10 minutes today. So, bit coin takes, 10 minutes for each block Ethereum takes

roughly about 15 to 17 seconds and miners today get 5, 5 ether plus all the transaction

fees for the transactions in the block the mine.

So, it also uses proof of work similar to bitcoin, but we will talk about some of that in

due course um. So, there is a reward for mining which is 5 ether and the miner who finds

the proof of work challenges solves the proof of work challenge first gets also the

transaction fee.

 (Refer Slide Time: 03:48)

So now, this is Ethereum is being developed by Ethereum foundation, which is a Swiss

non profit organization, but it has contributions coming from a much broader community.

So, there is a big community behind Ethereum that is contributing to that code.

So, just a very brief history of how Ethereum has evolved? So, the Ethereum white paper

came out in late 2013 and the project itself was announced in 20 2014 then there was a

yellow paper with more details that came out in mid 2014 and then the Ethereum

foundation was established.

And in July 2014 was the first initial coin offering. So, Ethereum was perhaps the you

are probably hearing about initial coin offerings ICOS, they are they are really a rage

today with people starting us creating a start up and coming out with their own crypto

currencies or coins for various blockchain use cases and Ethereum or ether was the first

initial coin offering back in back in July 2014. So, it had this good technical backing

yellow paper, white paper and Ethereum foundation before they came out with the ICO

right.

Ah the live blockchain came out a year later and since then, this it is actually seen a rapid

growth in the network itself in the valuation of ether. It is really grown multi forts and

fold since then and several large financial institutions have looked at variants of ether for

permissioned versions for enterprise use cases and that is also become quite popular and

we will look at one such variant in the next lecture, which is quorum and we look at

some of the properties in in quorum, first production ready version was released in march

2016. So, roughly a little over 2 years back, there have been various attacks on I would

not say, Ethereum itself, the Ethereum itself has been fairly solid the blockchain platform

has been solid, but on the smart contracts running on etheria, Ethereum that have been

various attacks on them. The most notable of them was the dau attack, which caused

several millions of dollars to be siphoned off from the smart contract that held those that

value and as a result that actually ended up in a hard folk of Ethereum.

So, people actually ended up reversing certain blocks in the blockchain, going back in

the past and then creating a folk from there to do not have this hacker take away all their

money right. So, that was a very momentous occasion, where people actually undid

something on the blockchain, the community decided they were going to go back.

But there have been a lot of security attacks on Ethereum smart contracts over the last

couple of years and last year in march 2017, the enterprise Ethereum alliance was formed

and this was again looking at how Ethereum can be used for enterprise use cases and

how some of the shortcomings of Ethereum for enterprise use can be overcome.

(Refer Slide Time: 06:46)

So, the just a high level view of the Ethereum architecture, what are some of the click on

strux. So, the Ethereum client a trans so every Ethereum node runs an Ethereum virtual

machine and all the smart contracts run within this virtual machine and clients can

connect to this the Ethereum client applications can connect through the Ethereum client

using an SDK there is a web 3 j SDK for it, transactions have a particular format of

course, it has a 2 address who are you transacting this with.

So, this just like bitcoin, it is a a particular recipient is mentioned, there is data pertaining

to the smart contracts thats also mentioned there, what is the value of ether, you are

going to transfer to the recipient. There is a nonce and there is a notion of gas, which we

she see shortly and of course, there is a signature by the transactor. So, the user who is

sending this transaction is going to sign the transaction and send it to blockchain.

So, note that Ethereum actually does 2 functions, it is actually going to transfer value or

ether in some sense and it is also going to execute. It can also execute a smart contract

function and that smart contract can hold data on the blockchain and there is a a

Ethereum network of many such nodes, all interacting with each other and these nodes

are the ones, which did the which runs consensus and determine, what block of

transactions should be added next to the blockchain. And this consensus is through proof

of work similar to how bitcoin did it there are alternatives being considered as well, but

for now proof of work is, what is being used by the Ethereum blockchain.

And there is a proof of stake algorithm, that is going to come out later in the casper

release, when a node receives a block, what the client with Ethereum client will do is, it

is going to execute all the transactions in the block in sequence and it will then update it

is ledger. Once the block has once it knows their block has been added, it is possible that

because, it is getting this block from multiple people redundant executions are possible,

but they are hoping that the notion of sharding will help reduce this. So, we look at

sharding right at the end of this lecture very briefly.

 (Refer Slide Time: 09:15)

So the underlying database that Ethereum uses is a level DB. So, it just has a basic key

value store available to smart contracts to store a, state information and the contract byte

code is also stored on chain. The list of blocks and the state data, this is similar to fabric

both the list of blocks and the state data is stored on the blockchain.

So now, let us look at a few notions right, what are accounts of what is gas and the notion

of transactions in in Ethereum? Right. So, Ethereum really has 2 kinds of counts, one is

called an externally controlled account. So, this is like my I as a user of Ethereum, I can

have a wallet on account and have a certain balance in that account. So, that Ethereum

ether balance is held in that externally controlled account. So, there is a user who is who

owns this account in some sense and from it is possible to transfer ether from one

externally controlled account to another externally controlled account.

So, this transaction is pretty much just identical to what bitcoin does. So, you are going

to have a certain set of inputs, a certain set of outputs and you are going to show that the

inputs are all unspent. So, it is a very it is just is basically a UTXO model and you can

transfer ether from one account to another account very similar to bitcoin.

But that is this one part of the story, the other kind of account that we have in Ethereum

is a called a contract account. So, this is really for smart contracts. So, every smart

contract will have a contract account and it will have an address very similar look, it is a

similar looking address to an externally controlled account. So, both of them have

addresses, but a contract account specifically refers to a smart contract and it does not

refer to a particular individual or an externally controlled account. and what is also

possible is for transactions to both ; however, externally refer to an externally controlled

account as well to a contract account.

So, you can, I can transfer some ethers from one account to another, I can also invoke a

particular smart contract specified at a particular address and that smart contract will of

course, run a particular function defined in the in the contract and that function can

update state information on blockchain. So, that is the distinction from bitcoin itself,

where it is just not bitcoins being transferred from person A to person B. In addition, you

can have a smart contract function that operates on arbitrary state information and the

state information is basically a key value store.

So, you can define your own keys and have values for those and apart from invoking one

contract, these contracts can also invoke other contracts. So, similar to fabric where one

chain code can invoke another chain code. One contract can call another contract and

again there can be a transfer of balances between contracts as well.

Now, all of this invocation of transactions or invocation of smart contract functions,

actually incurs a transaction cost and this is really to ensure that people are not, because

there is a public permission less system, we want to ensure that people are not randomly

spamming the network with invalid or wrong transactions right. So, people just do not

want to take away, maybe it could be a denial of service attack also right, I could just

randomly access transactions, access call functions and sub attach is a network right.

To prevent that Ethereum has the notion of gas. So, for each transaction you will have to

spend some gas. So, this is the fuel for the transaction fuel and unless you pay in terms of

this gas price unless you pay for the transaction, you cannot execute the transaction.

So, each transaction is also going to have a a particular gas price. So, I will say that for

this invoking this transaction, this is the gas, I am going to pay and there is you can also

set a limit, because you do not want your balance to be depleted like, what is the contract

really runs for a long time. First for whatever reason and you lose a large amount of

money right. So, you do not want to do that.

 (Refer Slide Time: 13:29)

So, the gas has both a price and a limit and the gas fee is really paid using ether right,

how much ever is the gas, there is a certain price. So, there is a mapping from gas to

ether and you have to pay that much ether to invoke transaction. So, this is really the the

gas price is really borne by the sender of the transaction.

Looking at the smart contracts themselves Ethereum allows or has multiple languages in

which these smart contracts can be written with many languages, serpent, viper, etcetera

but the one that is most popular is solidity. Solidity is an object oriented high level

language, it is very similar to to Java script and it is executed inside an Ethereum virtual

machine; so, any of these languages, what they do? Is they compiled into a standardised

bytecode? So, this looks something like assembly right.

So, pushed 10 and and it you could load data things like that right. So, it is really close to

something, it is really bytecode and this bytecode runs in a Ethereum virtual machine.

So, this bytecode is what is deployed onto the blockchain network and this compilation is

is kind of outside the syntax as I said is similar to Java script. If you if you familiar with

Java script, it is statically typed and it supports multiple inheritance. Yeah it also supports

complex user data types through structs. So, all this is very standard object oriented

programming principles. The core languages that have been defined have all been

defined for you are keeping in mind with the Ethereum virtual machine.

And Ethereum virtual machine itself is a bit locked down in some sense. So, you can

only perform a certain set of things, we will come to it in the next slide. The Ethereum

virtual machine allows only has certain limitations and and deliberately, I has certain

limitations and the languages also reflect that right there are only few things you can do.

For instance, even basic string manipulation is not supported, but it is only supported

through libraries.

So, there will be other libraries that you can use for string manipulation, but the

languages themselves to not support it. There is a, browser based IDE or solidity solidity

and it has that browser has an integrated compiler and the solidity runtime environment

can run without any server side competence.

An important very important philosophical notion for Ethereum smart contracts is that

the belief is that code is really long right, whatever is in the code is the right thing right.

So, there is no auditability or governance, there is no other authority that is going to

govern, this piece of code right. Whatever this piece of code is is going to be executed in

a decentralized fashion.

And many a time this philosophical notion, while it is create from a notion of philosophy

that, there is no authority, there is no governance, while that is great to hear because; it is

completely decentralized that way. In reality that becomes, problematic because what if a

hacker? As has happened in the past, if a hacker comes in and steals data because, your

smart contract had a vulnerability in it right, it allowed the hacker for steal the data.

Then what do you call it? Right, the code if you say the code is law then the fact that the

hacker leveraged a vulnerability, the vulnerability is it then a feature right. So, that

becomes a philosophical question then, the problem is that there is a specification,

typically of a problem that you want to solve and there is code that tries to write a

solution to that specification and typically that code is written by a human and it is

fallible right.

So, people you could make mistakes when tried writing code, there are bugs for instance,

in code that you write and smart contracts are going to be no different. There will

probably be bugs in smart contracts and if code is really law, then you are saying buggy

code is going to be believed and enforced upon all the time.

 (Refer Slide Time: 17:18)

So, that be causes problems and also cause for a lot of the debates, that have happened in

the community whether they should really be the case or whether there should be some

governance around it?

Moving on the eth coming to the Ethereum virtual machine itself, it does support turing

complete language it is a 256 bit virtual machine and the computation is intrinsically

bounded through gas. So, I avoid a certain amount of gas and if the gas is consumed then

the contract execution, the smart contract execution will stop right.

So, that way if a transaction or a smart contract had unbounded execution for some

reason, you provided certain inputs on which there was unbounded execution, by design

of having this gas and having a limit on it, we will ensure that the contract does not run

indefinitely. So, this allows termination to be definitive within a certain period of time

and it allows the execution within the EVM bytecode.

So, the EVM defines about 70 OPCODEs and your, you are limited by that. So, that is

only this the sets that are that is aloft and this these set of OPCODEs are interpreted by

an interpreter and for each OPCODE each of these 70 OPCODEs, there is a specific gas

value that is defined and this gas value is set based on, in some sense roughly, the

difficulty of that operation and what are some of the operations it could be? For instance,

arithmetic functions like add, subtract, multiply, divide. It could be logical operations

like and, or kind of logical operators, it could be conditional statements like if then else,

it can be send right, I can send ether to another address.

So, all of these are OPCODEs and for each OPCODE based on the computational

complexity on on a traditional processor, there are gas limits that are set. So, you could

say that ok, if I am going to make up numbers, if cos 40 gas or and multiply operator cos

30 gas right.

So, based on the complexity of the operations gas is specified and that gas. So, based on

all the operations in transactions, we say a transaction has 10 such operations. You will

add up all the gas for all the operations and that is the gas necessary to invoke that

transaction and that gas has to be paid for using ether, which is the in inbuilt crypto

currency in Ethereum and if you want to get a sense of what kind of operations, that are

left think of an old smartphone right back in the early 2000s perhaps right that those old

phones, whatever computation you could do on those old phones is what you could do on

an EVM.

 (Refer Slide Time: 20:20)

For instance, I would really cringe away from doing like crop complex crypto functions

inside my spot contract, in contrast with fabric we are providing you the ability to

provide crypto functions within the chain call itself whereas, an EVM that will be very

hard to do.

So here, is an example of a basic solidity code. So, I am not going to go into details, but

just to give you a feel for what this looks like. So, standard object oriented programming

similar to Java script right, a contract is defined you can import other contracts is also.

So, you can reference other smart contracts. So in this case, we are actually importing a

key KV store contract.

You can have transaction events. So, these events will be emitted when the transaction

executes and. So, if you this is the definition of the event and within the function, this is

a smart contract function, that is going to get invoked in a transaction you can also fire

these transactions. So, at different points of the function execution, you can fire

transaction events.

Then you could have modifier functions, these ensure that execution proceeds only if a

precondition is met, you can have the like a constant keyword added. So, this is for read

only transactions. So, this is for like a query query operation and you can have return

types right. So, this is roughly the structure of a of a facility contract. So there is a

contract, it can have multiple functions, you are defining some strucks or data objects.

You can refer to other contracts; you can invoke other contracts all that are possible. So

in some sense, this is or it is to curing complete, but the the sophistication is limited, it is

deliberately limited because you do not want to allow non deterministic execution, you

want termination to be guaranteed.

(Refer Slide Time: 22:04)

 So because, you want some of those properties it has been deliberately restricted ok.

What are some of the patterns? Right the non trivial decentralized, you should read

decentralized apps by the way, it should not just not just it is actually decentralized not

distributed. The data and logic can actually span multiple contracts typically, there could

be 5 model types, one is a database contract this is going to have all the data objects on

there. One is a control controller contract, which operates on the database contracts. So,

this is this will be the controller on, when or what to be written on to the ledger? And one

controller contract can work with multiple data database contracts, just for separation and

there is a contract managing contracts. So, this manages the contract itself, there is an

application logic contract and that could be utility functions defined as a separate

contract.

So, collectively all of these contracts could be a decentralized app, decentralized app in

Ethereum and the decentralized apps typically, also have a graphical user interface and

this allows users even those who are not so familiar with blockchain or the intricacies of

smart contracts.

(Refer Slide Time: 23:29)

The GUI will allow them to interact with the with the contracts, very similar to how web

2.0 apps to right. So, it gives you a HTML interface or a JS, CSS interface for interacting

with smart contracts.

Ah there are a lot of additional capabilities, that are being added or have been added and

are being added to Ethereum, there is a lot of innovation going on in the Ethereum

blockchain itself. So first as I mentioned, this is proof of stake for saving energy

consumption. So, with Ethereum the, it currently it does use proof of work which is it

consumes lots of a lot of energy, because you are doing a lot of hash computations,

instead there is a proof of stake and alternative algorithm that consumes lesser energy.

So, that is coming out later, it is not yet there with Ethereum, while the block formation

time is significant low. This is significantly lower, the throughput of Ethereum is still

fairly low, few 10s of transactions per second ok.

What are some of the additional capabilities right. So, the first one is there is a swarm

file storage that is basically allowing decentralized file storage to be built inside

Ethereum and what it does? Is it uses contracts, themselves to encourage cooperation

among nodes. So let us say, I want to store a particular file, I can store that in Ethereum

and I can pay the nodes, who are storing it. So, the contracts themselves will manage

both the storage as well as the payment for that story. So, that is that is being integrated

into Ethereum.

The other next one is whisper messaging. So, this allows secure private communications

amongst maybe a subset of entities right. So, it inherently supports unicast, multicast and

broadcast and what it does? It is actually encrypts messages, where is it simple in

concept right it is just encrypting messages and it is announced to the network off chain

right, it allows contract to contract communication apart from this person to person

communication.

So, whisper has been integrated into the Ethereum protocol, but it does because of all the

encryption and messaging complexity, it does have high latency and and low bandwidth

right. So, that is important to consider, it is also possible to use masks and filters to

narrow down the topics of interest. So, each of these messages you can put them into

topics right and you can probably, just you know filter these messages based on topics

that you are interested in and for any particular user or a client, you you would not be

giving away, what topics you are interested in what topics you are seeking to find out?

Ok. So, that is on on the secure messaging (Refer Time: 26:01).

So, raiden is a very interesting concept, built on top of Ethereum, it gives you a notion of

state channels. So, the idea here is with blockchain being rather slow, commit latency is

fairly high with bitcoin it is 10 minutes with Ethereum is 17 seconds or 15 seconds, but

that is still the significant period of time. Today our digital transactions go go through

much quicker than that right.

So, what state channels allows you to do? It is really a payment network, but what it

allows you to do? Is just have some proof on blockchain and actual payments happen on

a separate off chain channel right? So, this is not the similar to channels in fabric, it is a

different notion, where 2 or more parties can get into a particular channel. They can

exchange messages between each other to exchange value. So, they could exchange for

instance, ether amongst themselves, but they do not go to the blockchain for every one of

those transactions to just give you a very vague or a very high level example let us say, I

am going to go to a coffee shop, I go there every day, every morning I buy coffee. If I

were to for instance, pay for that coffee and crypto currency then every day, I have to

make that transaction and each of those transactions has to be recorded on blockchain.

But typically, the coffee shop and I are we kind of trust each other right, we are known

we are known entities unless, there is a dispute, we do not want to overburden ourselves

with going to the blockchain every time. So, what I could do? Is I I could say, I have 50

rupees in my or whatever right then let us say, I have 500 rupees in my account. I can go

to the coffee shop, I can just exchange a message saying here, I have send a message to

you saying, I am purchasing a coffee from you here is here is 10 rupees right, I can do

that over 100 days and collectively submit that whole set of transactions onto the

blockchain.

If for instance, I I try to run away with without paying for my coffee then the coffee shop

will be able to go to the blockchain, prove to them that I have actually cheated. So, there

are there will be penalties invoked in impost and that the sense is this incentivizes either

of us from cheating. So, that is really a a payment channel that is outside the blockchain

itself, there is only some minimal information recorded on the blockchain, that will be

useful for dispute resolution or service a proof of transactions, but nothing more right.

So it really allows, you to batch transactions together and send them and commit them on

blockchain. It is the, a very interesting notion to enhance the performance of blockchain

platforms. So, you should definitely check that out the rate, rate in state channels. This is

a similar to bitcoin the lightning network in bitcoin. So, you should you should check

that out.

So, the next capability is that of sharding or having transaction groups. So, what is

possible? it is this one is still under implementation, it is not yet out there with Ethereum,

nodes are nodes can be partitioned into multiple transaction groups and each transaction

group only processes certain transactions or only store certain amount of data. So, that is

really similar to the sharding notion in databases, where that database can be really be a

distributed database and with sharding each node in the database stores only certain

partition of the data right.

Similarly, with block chains also they are introducing sharding, where certain pairs hold

certain data and I do not have to hold all the data in the network, there are of course, you

do this at reduced security guarantee on on how many nodes need to be attacked for you

to take over at least that transaction group? So, you have to take over smaller there is a

lesser security guarantee there, but there are ways to dynamically figure out, what is the

trust level in the network? So, there is a lot of innovation going on in this space right, I

want to figure out what is the trust level? And based on that, I create my transaction

groups I do the sharding based on that. So, there are some interesting concepts going on

there.

So, Ethereum does have it is own limitations, it has a nice set of features it is great for

smart contracts for transactions, that involve exchange of ether between parties, but it

does have limitations in it is in it is smart contract logic right, smart contracts are the

state is bound to a specific contract. So, the state and the logic, if they are in the same

contract it or a same contracted, it reduces maintainability, what if I want to update the

contract logic right?

Then one has to manually copy over the state from the previous contract version to the

new contract version. So, all that becomes problematic, the some extent, the separate

separation of state contracts and the logic contracts that I talked about in dabs, which is

typically followed it helps it helps the mitigate this. So, that is a design pattern, that

people have found out that they want to separate the logic from the state, that way the

logic can be changed and the state can be can be reused across

As I mentioned, it does not support string manipulation, it does not support returning

complex data types. So, only simple data types can be returned and that becomes

sometimes a cause of concern, because it does not give you the flexibility you need as a

developer. Especially working with an object oriented programming language and

functions cannot contain more than 16 parameters and return values.

 (Refer Slide Time: 32:22)

So, that is also tends to be a limitation, because you cannot have complex data types. So,

you have to say, if you are if you do want to send that across, you have to send each

element separately and there is a limit of 16 and that becomes a concern right between

not being able to pass complex data types and between the fact that string date, string

handling is not supported very well that becomes a limitation for a developer.

 (Refer Slide Time: 32:38)

Debugging distributed application also tends to be harder since the EVM, today does not

return very meaningful error message, it is not something at least I have personally felt

using the using solidity on EVM.

And again for inter contract calls, when one contract invokes another contract again it is

not possible to pass dynamically sized data. So, as to be fixed length strings and the

functions calling one contract from another contract also creates a new EVM instance.

So let us say, I have both of these contracts. So, contract A and contract B both of them

are independently running in my in EVM instances.

Now let us say, if contract A calls contract B, it does not use the existing EVM instance.

It actually creates a new altogether, new instance right. So, that way many such instances

are created and if one contract is simultaneously called by many of these other contracts,

then that becomes a performance bottleneck, because I am spawning so many of these

instances redundant instances, I could potentially do with just 1 EVM instance.

 (Refer Slide Time: 33:41)

So, there is a performance penalty, when you are calling from you are you are making

inter contract calls. So that is that is a high level overview of Ethereum, there is a good

documentation that is available, there is a very large community using Ethereum today,

there is a white paper and a yellow paper that, I will encourage you to read and I

mentioned state channels are a very interesting notion.

So, I will I will you can check out the raiden network that is trying to improve the

performance of the public Ethereum blockchain itself. Today the performance is not at a

level acceptable for enterprise applications and they are doing some of these

improvements to assess that, but the raiden is specifically for 2 party or mostly for 2

party contracts sorry, 2 party exchanges and mostly used as a payment exchange ok. So,

that brings us to the end of the lecture on Ethereum, in the next lecture we will look at

some of the Ethereum developer tools as well as as quorum right as a permissioned

version of Ethereum.

Thanks a lot.

