
Blockchains Architecture, Designs and Use Cases
Prof. Sandip Chakraborty

Department of Computer Science and Engineering
Indian Institute of Technology, Kharagpur

Lecture – 51
Research Aspects – IV (Byzcoin)

Welcome back to the course on Blockchain. So, we are discussing about this is Byzcoin

Consensus Mechanism. In the last class, we have looked into a little bit of background of

nice cryptographic signing mechanism called CoSi or the Collective signing which

Byzcoin uses for signing individual blocks.

(Refer Slide Time: 00:41)

So, today we will look into the details of this Byzcoin mechanism; about how Byzcoin

and how Byzcoin solves the problem which was there in case of Bitcoin and Bitcoin-NG

protocol. And Byzcoin is a nice architecture in the sense that it the combines the concept

from proof of work and PBFT together and it takes the good of both Bitcoin as well as

Bitcoin-NG. And by combining all this concepts all together, it designs a nice protocol

and nice mechanism for ensuring consensus in a Blockchain base system. So, let us look

into the Byzcoin in details.

(Refer Slide Time: 01:22)

So, if you remember the requirement for a Blockchain Consensus Protocol that I have

mentioned in the last class, the first one is the Byzantine fault tolerance. The protocol

need to be Byzantine fault tolerance. The second one is it should provide strong

consistency guarantee. The third one is it should scale well to increasing work load and

the fourth one was it should scale well to increasing network size.

Now, if you look into the Byzcoin protocol the Byzcoin protocol will satisfy completely

the first two requirements. That means, the protocol is Byzantine fault tolerant and it

provides strong consistency guarantee by avoiding the faults; the second one, the third

and fourth one that two requirements, it makes the nice trade off between the

performances. In terms of the transaction that can be supported; transaction throughput

that can be supported and the scalability in terms of network size.

So, this is the Byzcoin protocol as I have mentioned it takes the good for from Bitcoin as

well as from Bitcoin-NG and combines the concept of proof of works scalability and

PBFT scalability; PBFT scalability altogether to increase the scalability in terms of

number of nodes as well as in terms of number of transactions that can be supported. So,

first let us look into the some problems in Bitcoin which motivates behind the design of

this Byzcoin protocol.

(Refer Slide Time: 02:55)

So, in case of Bitcoin, there is no verifiable commitment of the system that a block

would exist. So, for example, the Probability of successful fork attack, what we have

learned earlier that it decreases as the size of the block chain increases. So, whenever you

have a large Blockchain with a longer during that time, you have the lower probability of

having a fork attack. But whenever the Blockchain is growing at that time, you always

have a possibility of the fork attack and fork attack actually preference some of the valid

block to exist in Blockchain.

(Refer Slide Time: 03:35)

So, what happens that sometime it may happen that well, earlier say this was your

longest chain and after having a fork; it may happen that this rate chain becomes the

longest chain.

So, in that case this two nodes, this two blue nodes which were there earlier that they will

be considered fork chain and they will not be used in further. So, that is why we say that

in Bitcoin, we do not have any verifiable commitment of the system. So, even if you

have committed this block and this block seems to be accorded block. But there is no

guarantee that this block will be a part of your final Blockchain and that way it will be a

kind of waste of resources. So, because you know that Bitcoin anyway utilizes the

significant amount of mining power and the depending on the system power and your

computation efficiency, you are able to generate the mining block.

Now, that tree is that you have utilised so much of resource in the system, but ultimately

the block that you have generated that block is useless, because it has become a part of

the fork. So, that is one major problem in Bitcoin.

(Refer Slide Time: 04:56)

And in this case as I have mentioned that this two block becomes for and they are not

utilised any further.

(Refer Slide Time: 05:03)

So, that was the problem with Bitcoin and the problem is Bitcoin-NG as I was

mentioning in the last class that a faulty key block is verified only after the end of the

round. So, a faulty miner, it can introduce a number of correct micro blocks following a

faulty microblock in the system. For example, in this case this particular key block, it has

been say introduced by a miner. So, this miner has introduced a number of correct micro

blocks follow, followed by a faulty microblock. So, this before is a faulty microblock.

So, in this particular case, you can detect that this miner which was here which has

generated this particular key block, it is the byzantine miner or it is the malicious miner

or a faulty miner only after it has generated this particular block. And the interesting

thing is that by the time it has already added this block to this blockchain, because you

have asked or you have voted or better to say that the system has given the power to his

miner to introduce new block in the system. So, that way the miner has already added the

block and after that you are verifying that that particular block is incorrect.

So, that is the case now a fork alleviate this problem further because even if there is a

fork. So, it may happen certain forks are invalidated. So, at this stage, if it happens that

another node creates the key block here that gets point at here. So, all these valid block

becomes invalid.

(Refer Slide Time: 06:48)

So, we solved this problem by a set of PBFT verifier. So now, that idea that we talked

earlier that before putting the block in the blockchain rather than a single block or a

single node or a single signer signing the block you make a set of signer will collectively

signing the block. So, that is the solution we are introducing here that you solve this

problem by a set of PBFT verifier, who will verify your block and then only the block is

added in the block chain.

That means, we are not giving the power to a single miner to introduce multiple micro

blocks one after another. Although, that miner will be the leader of the system, but a set

of witness which will apply this collective signing protocol that I have discussed in the

last class. They will apply the collective signing protocol and after applying the

collective signing protocol if that particular microblock is verified by multiple such co

signers, then only the will get added in the blockchain.

So, in this case if you look into the earlier problem, this block before, it will never get

added in this blockchain and at this stage because other signers they will detect that well,

see this miner is faulty. So, remove this miner and adopt a new miner by introducing the

proof of work mechanism to introduce another new key block in the system. So, that way

you can resolve this particular problem in case of blockchain consensus. Well.

(Refer Slide Time: 08:28)

So, let us look into the solution of this in details that how you can use PBFT in this case.

So, in that Byzcoin paper initially they have discussed about the straw man design which

they call as the PBFT coin. In PBFT coin their assumption is standard to the normal

PBFT system that you have a 3f plus 1 fixed “trustees” who are there, who will run the

PBFT to withstand f number of failures. So, to sustain f number of failures as we have

looked into the concept of PBFT that you would require 3f plus 1 number of nodes in the

system.

So, the same thing is use here. So, this avoids the probabilistic strong consistency, it in

by introducing low latency in the system. So why: because say whenever you have

multiple signers, who are sign in a block and then, only you are adding a block in the

system. So, when multiple signer is signing a new block during that time. Well, if there is

another block which is being created by another side of the node; it is more likely that

well this signing will take some time and by that time one block will propagate in the

entire network.

So, that way it avoids this probabilistic strong consistency that well. Now among the set

of miners who are there in the world, whenever a new block is being proposed then those

miners in the world. They are collectively voting for only one block and that particular

block is getting added in your system. So, that way you can avoid this forking in the

system.

(Refer Slide Time: 10:33)

So, this entire concepts; so, let me try to explain it again with the help of one example.

So, the idea is there, you have now multiple nodes in the network who are connected

with each other say these are multiple nodes in the network. They are assumed that they

are connected with each other through some means and now among them some of the

nodes are working as miners. So, we have these nodes and then some of the nodes were

designated as miners node, where I am writing as M. They are the miners in the system.

Now, in case of the earliest case, it may happen that well. This miner is trying to validate

the new block or create the new block by using the proof of work mechanism. At the

same time this miner is create a new block. So that way, if both of them are able to

successfully miner new block at the same time. Then, you have two different block

which are pointing to the same pair in block in case of blockchain.

So, now, one miner is pointing to this block. So, this was the previous block, another is

pointing the block. So, I am just naming them as M 1 and 2. So, M 1 has created this

block and M 2 has created this block and both are valid block pointing to the same pair

of block. So, that is why we have the problem of the strong consistency here that well,

we are generating certain blocks which can result in a fork in the system.

Now, whenever in case of this particular case what you are doing, you are running a

PBFT among this miner. So, out of these miners, you are taking certain miners who are?

So, these are the miners which I have marked as circle. So, these are the miner. So, let us

use a different colour. So, these are the miners who are authorised to sign the block. So,

we are applying this kind of collective signing concept. Now these miners now they will

run a PBFT protocol among themselves. So, this miner create another level of hierarchy.

So, they will run the PBFT among themselves to add a new block in the system.

So, that way every time, you are making a consensus among the miners that which block

is going to add in the system and that way you are preventing multiply block to get added

to block chain at the same time. At that way you are preventing the fork to be happening

and which in turn gives you a strong consistency support in the system well. So, that is

the broad idea here that we are avoiding the forks in the system. So, these blocks we are

added only after verification from the trustees.

So, here these are the set of nodes who are working as the miners and this miners are

arranged as a set of which we call as a set of trustees, who collectively decides that

which particular block need to be added to the system and that particular block is only

added to the existing block chain ok. So, that was the solution using PBFT. Now let us

see the problem here.

(Refer Slide Time: 13:57)

So, we have certain problems of PBFT which are there which we need to tackle in this

particular scenario.

So, the first problem is that PBFT requires a static consensus group. Now, in case of a

proof of work based system, we do not want a static consensus group. Why? Because it

is open environment and anyone can join as a miner. Now say today I am joining as a

miner, if there is a static consensus group; then, what is the guarantee or when I will get

the chance to join to that particular consensus group. So, our basic idea that the system

will behave like a open environment in case of proof of work what we called as a

Permission List Blockchain that concept of permission list blockchain gets wide, if you

are thinking about the about the static consensus group. So, that is one of the major

limitation for this PBFT type of protocol.

Now, this PBFT type of protocol because of it works on this message passing

architecture, it uses a static consensus scope and scalability in terms of number of nodes

it is also a problem. Because PBFT it uses O of n square communication complexity and

O of n verification complexity. So, if you remember the PBFT mechanism that every

node in the prepare and the comic phase every node need to sends the messages to all

other nodes in that closed consensus group and they will get that message and only then,

they will be able to verify it. So, that way your communication complexities now O of n

square; under verification complexity of this O of n because that particular statement or

the particular block, need to be verified by all the nodes in the system.

So, that is the two major things and the third problem in PBFT is that you do not have at

a third party verifiable proof; that means, if you remember PBFT, PBFT uses Message

Authentication Code. So, in case of Message Authentication Code, you have share secret

between any two pair of nodes, if you have share secret between any two pair of nodes;

that means, if you have some miner in the system done. Then, every pair of nodes every

pair of miner, need to have a share secret among themselves which is a overhead

obviously, for the entire system and which prevents the system to behave like open

system.

And another problem which can be there in case of PBFT is the Sybil attack. Now in

case of Sybil attack, a node it can create multiple pseudonymous identities. So, the node

can create multiple such identities to subvert that the 3f plus 1 requirement of PBFT. So

that means I assume that a malicious node, there is malicious node and that malicious

node creates some 100 different identities which apparently looks different.

So, if you are getting the message from those nodes and that Sybil attack becomes

prominent even if you are using an open environment, where any malicious node can

join in the system and can then subvert the entire system by applying this kind of Sybil

attack by faults; the identities multiple faults identities simultaneously. So, to the other

node it just looks like that it is receiving the message from 1000 other nodes, but actually

1000 other nodes are pointing to a single malicious node. So, that is the kind of Sybil

attack which can happen in case of this kind of PBFT based consensus groups.

(Refer Slide Time: 17:40)

Now, to solve this, our first target would be to open the consensus group. So, how will

you open the consensus group? To open the consensus group, we use the proof of work

based system. So, we now use the proof of work based system to give a proof of

membership of a miner as a part of the trustees; that means we utilise proof of work to

determine who will be getting the membership in the trustee board or in the group of

trustees.

So, I will explain that with the help of a diagram, but before going to that this particular

architecture, it maintain a balance of power within the BFT consensus group. So, how it

maintains this balance of power? So, it uses of fixed-size sliding window. Each time a

miner finds a new block, it receives a consensus group share and this share provides the

miner’s membership in the trustee group.

(Refer Slide Time: 18:36)

So, let us look into an example to make that him much clear. So, here this is the sliding

window, this is my current window where I am considering that, which are the miners

who will be there in the trustee group. Now here we see that well this particular miner, it

has mined these 2 blocks; then this particular miner, it has mined 3 blocks and this

particular miner; it has mined 2 blocks. So, within this window; so, here the window size

is 1 2 3 4 5 6 7. With this window size of 7, so it gets the share of 2. This gets the share

of 3. This node gets the share of 2. So, this is their voting power or the power to

participate in the set of or the group of trustees.

So, in this particular window, who are the in the last window who has mined the

maximum number of blocks they become the part of the trustee group to vote further or

to sign further the about of validity of a particular block. Now, here whenever you are

generating a block say after this whenever a new block will be generated, this new block

obviously, will be generated by this leader. Here written as L, but this block need to be

collectively signed by this leader along with all these two signers who are there and who

are the part of the miner. So that to way, we are distributing this entire power among a set

of trustees and at the same time, we are preventing inactive miner to be there in the part

of the trustee group.

So, if you put in a inactive miner in that set of trustee group, you have a question about

the validity of that miner because that miner has not proven enough or given a proof that

it can sufficiently or it has the sufficient resource or sufficient motivation to generate a

new block in the system well. So, that is the idea of opening the consensus group. Now

your consensus group is not limited to a set of miners rather dynamically based on the

miners to a generating the blocks and their share in the current window, you are deciding

that which miners will part of this witness group will be signing a new black.

(Refer Slide Time: 21:19)

Well, then the second is our problem was with the Message Authentication Code because

the Message Authentication Code used private key cryptography, you need a shared

secret between any 2 pair of the miners. Now here we are utilising the core size protocol.

So, you substitute them at with public key cryptography, you can utilise this Elliptic

curve based cryptography or ECDSA mechanism to provide more efficiency say to use

the BLS, you can use normal signature or to have a more scalability in the Cosi-

architecture in the tree-based architecture; you can use the BLS based encryption. So, it

is start part verifiable, you have a public key. So, once every node has the public key,

now in the key block rather than put rather than putting the public key of just a leader,

along with that you also put the public key of all the witnesses who has signed those

block.

So now, if you remember in the Bitcoin-NG key block structure; so, in the Bitcoin-NG

key block, you had the key of the leader. Now apart from the key of the leader you also

add a the key of all the witnesses say W 1 W 2 W 3 who has collectively signed a block

and here, you can use a specific topology like ring, chain this kind of topology for the

collective verification. Say if these miners are arranged in a chain kind of topology, then

during the verification, you can pass that particular block to this miner. So, say they have

signed.

So, you had this blog B in the collective signing say if it is first encrypted by or signed

by say K L. Then it has been signed by K W 1, then it has been signed by K W 2 if that is

the case; then, in a reverse order you can just keep on checking the verification. But we

can again apply the concept of CoSi here to have a scalable approach of verification.

(Refer Slide Time: 23:34)

So, let us see how? So, how we are improving efficiency using Cosi? First of all for the

communication complexity, your standard PBFT protocol was O of n square

communication complexity. Now, we are thinking of well even if you are going a linear

complexity by utilizing this chain base system, can I improve the complexity further and

the answer is yes, you can do it using the tree based multicast protocol which has been

utilised in CoSi. So, you can share the information in the tree with O of n log n message

complexity.

And then, for the verification, you can use this Schnorr signature out the BLS for

verification, where you have a way of combining all the keys together, all the public keys

together and get a final public keys. So, if you remember the BLS encryption if g to the

power x and g to the power y are the public key, then from there you can generate the

combined public key as g to the power xy. So, with the help of this combine public key,

you can directly verify the message without going for the chaining procedure that I have

explain just a couple of minutes before and with this combined verification with the

message complexity of O of n, O of 1 with a constant message complexity or constant

complexity you can verify the signature.

Now, this multisignature and the community tree, together it uses this CoSi protocol and

this CoSi gives you a scalable way of doing the signing performing the signing, with O

of login complexity and verify the Si with O of 1 complexity. Now if you if you just

remember the key block. So, let me go this Bitcoin-NG architecture.

(Refer Slide Time: 25:25)

Well, before going to that as we have mentioned earlier that this CoSi; in CoSi protocol

you can implement PBFT with 2 subsequent CoSi rounds with prepare and commit.

So, if you remember the CoSi description that we discussed in the last class that in the

first round. So, every round has 2 phases; one downward phase and one upward phase. In

the downward phase of first round, the leader it shares the statement to all the nodes.

That means, my S and in the upward phase of the first round everyone generates these

values, individual values and the combine keys set every round. So, here this nodes

generator their own keys, share the public key with one; one computes the combine key.

So, that way these combined keys are created. In the third in the downward phase of the

second round; that means, in the phase 3, the leader sense a challenge by using this

combine value and the corresponding block statement that you want to validate that gets

propagated. And in the final phase; that means, upward phase of the second round, you

are generating these individual signatures with the help of R and C’s. So, that way you

are ovulating this behaviour of PBFT using the 2 downs of CoSi protocol.

(Refer Slide Time: 26:58)

Now, as I have mentioned, it also takes the good thing from Bitcoin-NG. So, Byzcoin

also uses the Bitcoin in this idea of separating out the transaction verification and leader

election. So, here again you have the key blocks and a micro blocks and individual key

block, now the difference is here. Earlier these individual key blocks, they were

containing the key of only 1 node or only 1 miner. Now rather than having the key of

only 1 miner, you have the combined key of all these nodes which are collectively

signing all the microblocks which are there.

Now, say in different rounds different Bitcoin-NG round or here, I will say the Byzcoin

Byzcoin round at every round you say this are the individual rounds. Now at every round

among this set of miners, 1 node becomes the leader. So, if I consider this round, in this

round this node has became the leader L. This yellow node as became the leader L and it

has generated this 2 microblocks and both of these microblocks are now collectively

signed by this 3 miners who are the part of this witness committee. Now in the key block

rather than putting the key of this node you are. So, if you are using a BLS signature in

the earlier case, you have put just the key of say the key of this node is g to the power x,

the key of this node is g to the power y and the key of this node is g to the power z.

Now, in this key block, you are putting the combined public if you are using BLS; you

are putting the combined public key which is g to the power xyz. Now using this key

everyone can verify that and whenever a micro block is generated; by utilising this tree

base structure you are verifying you are getting this microblock verified by this witnesses

who are there among the miner. And then, only adding the micro block in the blockchain.

So, that way it solves the entire problem of Bitcoin-NG as well as the standard Bitcoin

ok.

(Refer Slide Time: 29:19)

So, let us look into the performance aspect. So, in the performance aspect this shows the

block signing latency. So, here if you look into this line; so, this is the line corresponds to

Byzcoin. So, if you look into this line; this line is as you increase the block size, this line

is less than the other protocol. So, this is the standard CoSi or the flat CoSi; that means, it

is not utilising the key base structure that are the flat structure in O of n it is performing

and a verification and O of n square it is performing the signing. Here, it is done by the

tree-based protocol and this particular line corresponds to the standard PBFT protocol.

So, you can see that it is significantly reducing the block commitment latency as you are

increasing the block sizes.

(Refer Slide Time: 30:15)

 The second thing if you look into the transaction per second which was our major

concern. So, if you look into this Byzcoin performance of transaction per second; so, so,

this particular lines, this 2 line this lines, this lines they shows the transaction per second

for this coin with different numbers of miners and this is the standard CoSi protocol and

this is the Bitcoin protocol the standard proof of work.

So, you can see that well this Byzcoin, it is significantly able to improve the transaction

per second which is supported by the consensus protocol. So, for Bitcoin the standard

block size that they have considered up to 8 MB which is now standard for proof of work

based protocol. You can go up to 8 MB of block size. Now if you increase the block size

further, you can get around say if you think about the people which the standard

transaction platform. So, people supports around 500 transactions per second. So, with

Byzcoin, you can reach up to that scale with block size of 16 MB or 32 MB.

So, that way we see that well Byzcoin was able to significantly improve the performance

in terms of transaction per second that can be supported in the system and because it is a

proof of work based protocol, again you can support large number of nodes or you can

work on top of large number of nodes ok.

(Refer Slide Time: 32:10)

So, that is about the Byzcoin protocol; 2 interesting things that I want to share with you.

So, this particular the first preference the first preference, it provides the original people

of Byzcoin. So, the original talk from the authors of the papers are also available there.

So, I suggest all of you to go through that and you also have the Byzcoin source shows

publicly available. So, you can run of Byzcoin network and look into the different

performance aspect of Byzcoin by exploring that particular architecture.

That is all about the Byzcoin. In the next class, we will discuss about some of the other

protocols which recently people or the researchers have developed to tackle this

scalability problem in Blockchain based network.

Thank you all for attending this course.

