
Blockchains Architecture, Design and Use Cases
Prof. Sandip Chakraborty

Prof. Praveen Jayachandran
Department of Computer Science and Engineering

Indian Institute of Technology, Kharagpur

Lecture – 46
Blockchain Security – III (Fabric SideDB)

Hello everyone. Welcome back to the next lecture of our Architecture Design and Use

Cases Course. We have been going through different notions of security and privacy. So,

last lecture we looked at what are what is transaction privacy, data privacy, user privacy

and what are the different constructs one could use to achieve privacy. And now we

going to look at one other construct, a very important construct in hyperledger fabric that

allows you to achieve data privacy. So, we look at that. So, it is called side DB.

(Refer Slide Time: 00:43)

So, before we get to side DB itself let us look at just the ledger aspect of hyperledger

fabric, right.

So, what are the things we are storing on the blockchain on the ledger? So, we are going

to store the blockchain itself. So, this is be chain link of blocks with transactions in each

block and apart from that we have a state database that holds the data’s that is handled by

these smart contracts. So, each smart contract can have its own private data store and in

that data store you can store information that it seeks to keep immutable on the

blockchain. And these transactions are referring to data in this state database as part of

the smart contract invocations.

Now, on top of the state database there be couple of a few index indices that are created,

one is a history index which says which transaction is in which block and a history of all

such transactions over time and there is also block index, right. All these are stored, the

indexes are stored on the state database and that is a level DB for fabric. And for the state

database itself there are two options, one is you could use today at least there are two

implementations; hyperledger fabric gives you a pluggable interface for your database

definition.

Today there are two implementations, one is there level DB which is an embedded key

value database and it supports basic functionality, right. So, it embeds supports key

queries. So, I can give you a particular key ask for the value. It allows composite key

queries and also allows range queries. So, give me all keys from a to b, right in that

range. This is a basic very simple key value store.

The slightly more sophisticated one is couch DB which is really a document store. It

supports, so basically each key is really a document, it can be a (Refer Time: 02:32) on

document and it supports key queries, composite queries, range queries plus full data rich

query. So, instance in the level DB case the data is really a block, but in couch DB you

can actually have a schema and ask specific queries about data within a particular

document itself or a particular key.

(Refer Slide Time: 02:54)

So, this is what I mentioned. So, with level DB it is a very simple key value store. So, all

you can just is do is get the entire value for a particular key, a few additional composite

key in rich query capabilities. But these may not be sufficient for many applications,

right. So, if you want to do more sophisticated query kept queries in your chaincode, it is

really not this may not be sufficient, right. Be, might what you use a document store such

as couch DB, where you can do a much more richer queries on the blockchain and you

can also get richer reporting and analytics performed on the chain using chaincode, ok.

(Refer Slide Time: 03:34)

Now, coming to why a side DB, right. So, what we what many we have seen many

applications ask for a many industries cases ask is the ability to be able to selectively

share particular pieces of data with only certain entities and blockchain by default

replicates all the data across all the peers. So, even if you have channels all the entities

all the participants of channels will see all the data.

So, suppose you have some data that you consider private that you want to you want to

share only with a subset of participants within a channel, right. So, that data you want a

keep private and only that is a three out of 10 people should see the data no one else,

right. How do you do that? The side DB provides that kind of capability where I can for

each for each data element I can specify who are the other peers who will see the data.

So, it gives you privacy even within a channel so that only subset of the peers see it. It

also give you the privacy with respect to the ordering service. So, even the ordering

service will not see that private data they will only see hash, right.

And anyone querying just the blocks of transactions just looking at the blockchain itself

will also not see the private data. So, across the peers the blockchain, as well as the order

we can ensure data privacy of specific private data. And this says it comes in handy for

many applications where audit requirements are there is a stringent compliance and audit

requirements and there are also regulatory requirements. So, such as healthcare, KYC,

insurance and many financial services use cases also.

So, the way it does that is only the evidence of the private data maybe a hash is going to

be is going to be on the transaction and will be seen by the ordering service. So, all the

other information is kept private to a subset of the authorised peers, ok.

(Refer Slide Time: 05:33)

So, the chain code is going to store both public data as well as private data and the

private data will only be with authorised entities only the hash of the private data gets

onto the transaction. Now, the private data is it is possible to group them into collections.

So, collections as an notion where I can say collection a has these 3 peers, collection b

has these 5 peers. So, I can create those collections and I can have data within those

collections.

So, if a particular data element is in a collection that data element will only be seen by

participant of the collection and just like channels it is also possible for the membership

of the collections to change over time, right. So, collections are again associated with

access policies. So, you can define who can read the data, who can write data. So, those

access policies can be defined for each collection and the as I said the private data is only

stored on the peers who satisfy that access policy.

So, again the distinction from channel channels is that within a channel everyone sees all

data, but side DB is a construct whereby you can prevent certain private information to

be seen by to not be seen by all parties in a channel it will be seen by only a subset. The

private data is also not in the transaction in not in the block of transactions, it is also not

seen by the order. So, the unauthorised entities even if they are authorised within a

channel they only see the hash they will not see the private data. So, how does this all

work? So, let us take just one collection, right.

(Refer Slide Time: 07:15)

So, let us say there is a endorsement and that endorsement is going to be have two parts

to it is this is basically transaction proposal they will have two parts one is a primary read

write read write side. So, what this means is this is the public information that anyone in

the channel can see. So, this is really the read the set of data elements that are read and

written by the chaincode which is public that is the primary read write set.

Apart from that this going to be private data in the collection that is the private read write

set and for that only a hash of that private read write set is captured in the endorsement

itself in the transaction. So, in the endorsement phase only the hash of the key and hash

of value is written to the public state. The actual key coma value of the private

information is held in a separate database which is called the side DB. So, in this case, so

there is public state information and there is a private state and these are held separately.

The private state is then disseminated using gossip the public state is part of the

transaction and all the peers will get the transaction, but the private information is then

distributed using gossip in fabric.

(Refer Slide Time: 08:35)

What happens after that? So, now you written the hash of the key and hash of value into

the transaction so that make sure allows immutability and there is a private data set that

only a subset of the pees in the channel have. Now how does validation take place? Now,

the validation of course, of the public read write set happens as before, apart from that

the hash read write set on all the committing peers they will also check the key, right

sorry they will also check the version.

So, there is a hash of the key and as a particular version you can check that version is not

duplicated, right. So, no two transactions in a particular block are reading the same

information. So, that is a transaction a, reads a particular version for a private data and

modifies it in some ways it is going to be, going to be part of the write set. So, tries to

modify the data. If transaction b, had the same version it means that its read stale

information because this is the previous transaction in the block that is my modify the

private information. If transaction b, tries to modify the same element in the same block

then that will be rejected because the version on the hash of the key can be checked,

right. If both of them are in version 1.0 then the second one will get rejected.

So, that is really almost like a the same validation that fabric does on state variables, this

is similar to not allowing double spending that is the same account to spans cannot be

made from that, right. So, that really is how validation also happens. The validation

happens on the hash of the key rather than the key itself.

(Refer Slide Time: 10:20)

Now, likewise just was we had one collection it is possible to have multiple collections.

So, you can have different collections with different subsets of peers and there all held as

separate state information. So, that is private state 1, private state 2 and in this example

collection one is persisted between peer 1 and peer 2. And there is a partitions 2 and 3

they are persisted by just one of the peers, right. So, or private state 2 resides only in peer

1, private state 3 resides only in peer 2. So, they are they are bifurcate, right. And the

only the hash of those values get into the public state, ok.

(Refer Slide Time: 11:05)

So, these collections, so how does the life cycle work? The collections can be defined at

the time of chaincode deployment. So, I can say these are the collections these data

elements when you are writing into the when the when the chain code is going to write

this state information into the ledger it will specify whether this is public or whether it is

a private collection. And its possible to easily add or remove collections over the life

cycle of the chain code, over time you can add new collections or remove collections.

You can also using the channel configuration transaction you can also configure

transactions. So, you can add new members to a collection you can remove members

from a collection, so all that is possible, right. So, all that is happens through channel

reconfiguration, ok.

(Refer Slide Time: 11:52)

So, that is a really nutshell the whole state DB notion of how subset of entities within a

channel can really hold private data just amongst them, that data is shared with others

through gossip with the other authorised entities through gossip. What is there in the

public blockchain itself is just hash of that private data, right. So, in some sense

immutability is guaranteed by the platform itself. So, they no party can modify this

private data. So, the other people who have the private data will be able to detect that

because the hash is on the public chain. And double spends also avoided because

validation can be performed using version information on the hash of the key, right. The

key itself is not revealed only the hash of the key is in the public state.

So, to get more details you can check out the fabric documentation on ledger, gives you

good details and also working example of how side DB works. So, this really helps

provide data privacy amongst sub set of participants within a within a channel and also

with respect to the ordering service ok.

So, that ends this lecture on using side DB as a construct for privacy. So, with this I think

you seen a range of constructs for providing security and privacy in blockchain

platforms. And this is a very hot area for research and an innovation, there is lot of action

going on in both academy as well as industry in the space.

With that thanks a lot. I will see you in the next lecture.

