
Blockchains Architecture, Design and Use Cases
Prof. Sandip Chakraborty

Prof. Praveen Jayachandran
Department of Computer Science and Engineering

Indian Institute of Technology, Kharagpur

Lecture – 28
Hyperledger Composer – Application Development

Hello everyone. Welcome back to the next lecture of our Blockchain course. So, you now got

the good hands on experience on what fabric is, how to use hyperledger fabric and so on. In

the next 2 lectures we are going to see a another very interesting hyperledger project called

hyperledger composer. And this is primarily intended to help developers, business users to

create blockchain applications in a very simple and intuitive manner. Today with hyperledger

fabric you actually need to understand a good deal about how fabric is architected.

(Refer Slide Time: 00:42)

You need To understand ordering service, peers, the certificate authority MSPs, you need to

understand identities, you have to work with certificates, you have to have digital signing.

That a lot of complexity is there, that only a an experienced developer might be comfortable

with. It takes a little while to get a hang of all of these concepts.

Hyperledger composer wants to make that all that process of development a lot easier for

you. A development and management of your blockchain network. So, it is really targeted

towards business users. It is on the emphasis is on developing a business centric vocabulary,

to define what you are blockchain is going to be. So, you are going to be defining your smart

contract in terms of models, you are going to model it in terms of assets. So, instead of

thinking a low level variables, data elements you are going to be talking in the higher level

business assets. You will be talking in a in the notion of participants, you do not have to work

with certificates any more.

And you will be talking about business logic or business transaction. So, one of that is

abstracted one level up for you to define your blockchain network. And this we hope will

significantly reduce the risk of development, and the fact that it takes long time to develop

some of these applications and can be fairly complex. It also increases understandability and

flexibility.

So, if when you see a composer code, then you can easily understand what this code is trying

to do, and you are not at you not working with a very high low level programming language;

like, golang or java. Now what are some of the features like I mention? It is helps you model

business network. And it also helps you test an expose via API’s. So, composer has a way to

automatically generate certain API’s based on the assets that you define.

And applications can invoke transactions to interact with the business network um. And it

also provide some support for integrating your existing systems your organizations internal

systems with blockchain. This is fully open source it is opened and governed and it is part of

the Linus foundation. It is under the hyperledger project itself. It is another project in

hyperledger. The current implementation of composer works on top of hyperledger fabric. So,

there is a hyperledger fabric network that you have setup. And composer allows you to do

application development at a higher level business level compared to what hyperledger fabric

allows you to do.

But it is possible that in future composer could connect to other blockchain platforms as well.

Today it only connects to hyperledger fabric, that is what it is shown in this picture there is a

business application, there is a composer layer and then there is fabric. So, today it connects

only to fabric, but in future it could connect to other platforms as well. There is a very easy to

use web browser playground. So, you can go to the playground you can start playing around

with it, you can get a feel for what application development looks like in the composer world.

And the same code you can actually you can get the download the code setup yourself and

create a playground just for yourself. So, that is also possible.

(Refer Slide Time: 03:49)

So, what are the main goals of composer why did we create this? It is to increase

understanding of business applications, you can think of coding your smart contracts from

business context. You can hopefully save significant amount of time in the development

process itself. It helps you reduce risk, because now your coding is a lot simpler. It is not

have to deal with the netegrity details of fabric. And it hopefully also increases your

flexibility, and how you abstract your concepts, and it makes it easier to (Refer Time: 04:20)

so, you can improve upon your code fairly easily.

(Refer Slide Time: 04:24)

So, composer is has been developed using a fairly extensive open development toolset. This

should be very familiar to you if you are a JavaScript fan. So, it is entirely written in

JavaScript. So, there is a custom modelling language is again very intuitive to use it model

notions of assets participants and transaction we will talk about that. We will talk about some

of the business logics that can be written in JavaScript, and that can be run as part of your

smart contracts. So, we will talk about that. There is a web playground, that you can play

around with then understand how to create applications.

There are couple of libraries; a client libraries, composer hyphen client, composer hyphen

admin. That you would use to connect your blockchain application to the fabric network. And

these are provided as npm module. For couple of very prominent well highly used editors,

there is a support for writing your composer applications on them. So, we support atom and

visual studio currently, there could be others in the future CLI utilities are provided. So, you

can invoke composer commands directly using CLI.

And there is of course, API's as well. And composer also gives you the ability to generate

code. So, this is specifically for people who want to generate quickly generate a user interface

for their application. There is yeoman it is a popular tool for code generation. So, based on

how you have defined your assets and other modelled other things in your network. You can

automatically generate code that can be connected to a user interface.

And it also follows existing standards with loopback. And swagger to connect your existing

systems and access the data through that. So, it provides an easy way for you to generate a set

of API's for your specifically for your application. And then you can use your API's in other

applications.

(Refer Slide Time: 06:21)

So, we will look at some these concepts in a little more detail. So, the specific there are

multiple user roles in a blockchain correct. So, there is a network service provider. So, the

one who runs a network itself there is a consumer of the network who is going to just be

managing the network. Say, first provider is going to be governing the network. So, they will

they will figure out who are the consortium members. How do members enter and leave the

consortium?

The service consumer is going to be operating the network. So, you can think each

organization having an admin, who is managing the entities in the network like peers and

(Refer Time: 06:53), but the focus of composer is really in the business service provider. So,

business service provider is like it could be the application developer or the architect. So,

they are going to develop the blockchain application.

They are going to define what the information going to be stored on the network is going to

be what are the assets. What are the transactions that are going to be performed, what are

some of the applications, how are those applications going to be consumed by the user so it

could be some presentation logic there and how these transactions are going to be performed

on blockchain also.

There is also a service consumer. So, this might be the end users right of your applications.

(Refer Slide Time: 07:32)

So, what are some of the key concepts here? So, we will start with the end user, right is

always good to start with the end users perspective of the whole thing right. So, the end user

thing of it as they want to perform a specific function maybe, I am an end user who wants to

transfer balances in a bank account that is maintained on the blockchain. Or I might be

looking to trade certain artifacts let us say I want to the network manages the set of cars. And

I want to purchase cars on the network.

So, maybe there is a presentation logic. And the developer is going to be using that UI user

interface to be interacting. Or they could also directly call API, API calls onto the onto the

onto your onto the application you have developed. So, these end users the way they interact

is they have to be registered or defined in a participant registry. So, there are a set of

registered participants, and they will be part of a registry that has be defined. And who are the

set of participants? The legitimate participants will be defined by a service consumer. As far

they will define saying, these are set of entities belonging to my organization who should be

participants of this network.

The business service provider is the developer or the architect. They are going to develop a

few things right. They are going to develop the smart contract logic. So, this will define the

set of assets or data models that you will define as part of this smart contract. It also defines

some of the logic or the business logic encoded as functions. So, in fabric it was chaincode, in

composer it is going to be node js functions. Now the business service provider apart from

developing the smart contract logic they might also develop an application on top. So, the

application could have rest interface, it has some business logic, and it has some integration

logic with other applications that it might interact with both internal and external to the

organization.

And along with that they might also develop the UI layer for it, apart from the application.

So, the end user can directly use the UI or can call the application through the rest interface.

Now whenever they invoke the rest interface performing certain function invoking certain

function. This invokes at transaction on blockchain. So, there is going to be a transaction

registry, which tells you what are the set of valid transactions. So, this is a embodiment of the

set of smart contract functions you have to find. So, there is a set of transactions you can

provide you can specify. So, that is a transaction registry the transactions as I mentioned are

written in node js code. There is also an asset registry, which defines a set of assets being

modelled as part of this business network.

(Refer Slide Time: 10:13)

So, let us take a particular example right. Let us say this is the vehicle auction. So, who are

the entities in this in this whole ecosystem? There could be a developer who is going to

whole architect and develop the resolution, there are a set of members or users who are

interested in owning vehicles in turns of bidding for owning this vehicles. The vehicle itself

you can think of it as an asset. So, there is a so, if you of think of it and then and there is an

auctioneer. The auctioneer it is an it is an optional entity in this ecosystem. They could for

instance be responsible for closing out an auction right. They might start an auction and close

an auction. So, that might be what the auctioneer does.

So, what are some of the key concepts here? That you are we are interested in. What are some

of the let us start from the user itself right. The user wants to see what are the set of vehicles

that are opt for auction. So, there is a vehicle listing that will say these are the set of vehicles

that are available for you to bid. So, each member can come see the list of vehicles, see pick a

particular vehicle they are interested in and play some bid. Before they are able to list the

vehicles and place a bid of course, they have to be registered in the member registry.

Likewise, you can say there is a separate registry for members and a separate registry for the

auctioneer. So, there could be multiple auctioneer as well.

So, those are the set of members in the network. There is a vehicle listing, and there is going

to be a transaction registry. So, this transaction registry will hold what are the offers that you

can make. So, when a member wants to place a bid on a particular vehicle that will be

recorded as a transaction. So, that will be the transaction registry. And finally, there is a

vehicle registry that has the vehicle listing; it has the listing registry as well. So, each vehicle

might have attributes all of those will be stored. And when you close when you place a bid

that bid will also be entered into vehicle registry.

(Refer Slide Time: 12:06)

So, that is just an example to show some of these features I will show you some (Refer Time:

12:10) of code as well to get you for you to get a feel of what composer looks like. But before

we get there some components of composer, what are the things that you will be developing

as a composer user? So, the first thing is you have to develop your smart contract logic. So,

smart contracts are you can think of it as comprising of the following correct. So, there is

going to be a model file and this model file will describe the set of assets. So, in the previous

example it was a set of vehicles, but you can think of it as any kind of assets that you want to

define. And you are also going to define a set of participants who will participate in this

network and a set of a transactions.

So, these transactions are the business logics that will operate on the assets. So, in the

previous example, placing a bid would be a transaction whereas the vehicle itself would be an

asset. Now this whole thing can is you can specify this in a very expressive modelling

language that includes notions of relationship. So, I can create multiple assets and say there is

a relationship between the assets. Let us say I can define let us say a member and a vehicle,

and say the vehicle has one of the members as an owner. So, that is the owner becomes a

relationship between members and vehicles right. So, we can define relationships like that,

and you can also define validation rules.

So, on the assets themselves you can specify validation rules. And these validation rules will

be automatically enforced when running the smart contract. Then there are transaction logic,

the transaction processors and this is JavaScript implementation of the transactions. So, we

can implement them as very simple JavaScript functions. And these will get executed in the

blockchain in a decent (Refer Time: 13:55). So, we will also see how that happen. In the third

thing that you can defined as access control rules. So, these are like privacy settings saying

who can write which asset, who can modify which asset, who can read which assets, all of

those access control rules can be specified in a separate ACL file.

So, each of these think of them as separate files that you can write and the advantage is the

models can be reused across different smart contracts or and even across different networks.

So, I can define one model for let us say vehicles. And I can actually use that in multiple

applications. Maybe there is an insurance application; maybe there is an auction application.

All of them can use the same set of models. And all these together, models, transaction

processors and ACL's all taken together is what defines a business network. So, we will see

that. Now apart from this developing the smart contracts, you are probably going to develop

certain applications and services on top.

So, these application and services might create delete update and query some of them assets

that you have defined before right. So, these are the application logic that will invoke some of

these transactions to update assets. And it might also implement be implemented inside other

business applications larger business applications. And it could be integrated with other

systems using rest services. Then there could be a presentation layer. So, this is a front end or

the user interface.

And maybe there may be several of these applications, one each organization may have it is

own presentation layer. And it interacts with the business logic using rest API's. And

composer has a neat way to even generate a skeleton of this presentation logic for you. And it

is automatically generated code for you based on how you write your smart contracts.

(Refer Slide Time: 15:42)

So, what are some of these key concepts right we have talked about model files. The model

files describe the assets participants and transactions of the business network. It is a very

expressive modelling language. It includes relationship arrays and validation rules. And all of

this each let us say an asset and participants they are captured as JSON so, they are all

serialized data as JSON. And it can be fully validated by a composer runtime. So, think of the

composer runtime as actually a chaincode a special chaincode that is actually running within

fabric, which will interpret all of this that you all of this logic that you specified. Be it assets,

be it participants or transactions, this runtime is going to interpret all of this information that

you are providing it.

Model files can also be like as I said shared and reused across multiple business networks.

There are access control lists that define the sharing and privacy. And these rules are

automatically enforced by the composer runtime again. So, we will look up for each asset

what are the access control rules, and it will enforce that the transaction processors require

implement the business logic business requirements.

Each standard JavaScript code and it is executed again automatically on the blockchain when

you are in working those transaction. All these together forms what we call a business

network definition right. It is called a bni file and all these are part of that.

(Refer Slide Time: 17:03)

So, here is an example again of the vehicle auction example itself. To give you some idea of

what each of these is going to be. So, our main asset is here the vehicle. So, if you look at it is

define asset vehicle, it is identified by a vin. So, this is the think of it as a primary key in

database parlance.

So, there it is a string. So, this is as like a standard object. And this hyphen hyphen greater

than symbol represents a relationship. So, this vehicle has a relationship with a relationship

called owner with a particular member. So, let us look at what member is right. So, member

is a participant in the network, it is a special kind of participant that we are defining. So, first

we have defined this abstract participant that has properties of email username and first name

and last name.

And the member is a extension so, this extends is a standard inheritance terminology.

Member extends user and it has a single element within it which is the let us say the account

balance of that particular member. So, how much money do you have in your balance? Of

course, you cannot bid greater than how much money you have in your balance, you cannot

place a bid more than that.

Auctioneer is also a user, but they do not have any balance because they are not going to be

placing any bids. So, we do not need any balance for the auctioneer. So, the vehicle could be

owned by somebody who is a member of the network. Then there is a vehicle listing, again

identified by a listing ID. So, you could think of multiple such listings it is a identifiers

listingid. And the whoever is setting up this auction can set a reserveprice. And this

reserveprice is basically something let us says that if the bid is going to be less than this

reserveprice, then I do not even want to sell my vehicle. Only if the bids are more than this do

I want to sell it so, that is the reserveprice. There is a description and there is a listingstate

actually it is not shown here, but listingstate is actually of type, it is an enum variable, it is an

enumerated variable. So, you can also have enumerated variables and composer.

And it is a state right the state could possibly take different values saying this vehicle has

been offered an auction, it is on sale in the sense that your bids have been have been made for

this. Or it could have a final state saying sold so and so forth right so that will be the state of

the vehicle itself. And there could be multiple offers that are placed. So, each time an offer is

placed initially it will be empty. But each time an offer is placed it will get added to the set of

to the array of offers. And it has a relationship to a particular vehicle. So, each listing will be

associated with a particular vehicle, again it is a relationship to the vehicle asset. So, this way

you can easily think of it as business contract. So, here if you look at it I have only noted it in

terms of vehicles a listing, a members and the placing of bid and so on right.

So, these are all business contracts. I do not have to there is no where here do I have to worry

about whether there is a certificate involved, what peer I have to connect to what channel I

have to connect to and so on right. All of that will be abstract a way by composer made easier

for you. And then there could be transactions. So, this is the business logic itself. So, here we

are defining what those transactions maybe, again with relationships to vehicle listing and

member.

So, this is an offer that someone is going to be placing. And there are certain functions you

can call. So, let us say there is a make offer. Where a particular member maybe making a an

offer on a vehicle, you will invoke that function to execute that logic. And what that logic

will do is will first check whether you are a valid member; if you are valid member check the

vehicle you are placing a listing on whether it is open for action. And then whatever is your

offer, it will add that to your offers variables. So, that is kind of what the function would be.

And you can implement that in JavaScript script easily. There could be other functions; like,

auctioneer for instance could close bidding, after a period of time they could just call that

function to close the auction and whoever is the highest bidder could be the owner of the will

be made the owner of the of the contract.

(Refer Slide Time: 21:13)

Now let us look at some examples of how you could define a access control in this in this

example right. Or more generically now it is possible to restrict. Who accesses what assets,

and what rights do they have on that asset whether it is whether they are able to create that

asset, whether they are able to modify that asset call a particular function on that asset,

whether they are able to read it, all of those can be defined by access control tools.

It can be very simple starting from everybody can read everything. So, here is a that first stop

example this is for that. Everybody can read everything it is going to do it is going to have

who are the participants, any kind of sample participant any participant that follows this is ok.

What is the operation? Everyone can read. So, that is the read operation, what is the resource?

All resources. So, it is sample dot star and action is to allow. So, we can say deny there. So,

you can say deny this particular user access to this resource so, that is also possible. So, you

can have more complex access control rules as well.

So, you can say only the owner of a particular asset can do anything with it. Or can do

basically they can read write modify everything alright. So, here again owner has full access.

So, there we going to allow, what is the operation everything right read, write everything.

Who is the participant? This participant follows this. What is the resources? It is a one

particular asset. And you can specify a condition there that says owner is really this

participants. So, whoever is invoking is actually the owner. So, only if this condition is

satisfied will they be allowed to perform or will they be permitted to for that to perform that

transaction and you can also have credentials right.

So, based on the users secret that you are using, you can ensure that only certain users are

authorized to perform a certain transactions. And these access control rules are also available

in the playground even if you are doing a toy. Example that you are building you can check

this check these out, check these access control rules out in playground as well.

(Refer Slide Time: 23:16)

The other features of composer are events in queries. So, with events this is similar to the

fabric events that I that I mentioned right. So, again with composer events, you can define

events on the models, you can define events are emit. So, they events are defined as part of

the models themselves. So, when you are defining your model file, you can say emit this

model is this is a particular event defined in the model.

And based on the events defined, you can emit them as part of your JavaScript functions your

transaction logic. And business applications can trap these events and perform other functions

on top right. So, this is very similar to the chaincode events that I mentioned to you in fabric.

The events include when the events are emitted, they also include the transaction ID and all

other relevant information for you to take business business for you to do business functions

on top right. So, you will have what is the transaction ID on blockchain that was part that

committed this transaction that emitted this away.

Now, the other thing you can do with composer is queries. So, in hyperledger fabric we have

support for both GolevelDB, as well as CouchDB as the state database. So, the CouchDB

gives you ability to store elements as JSON documents and gives you rich querying

capabilities as well. So, if you are using if you set up your fabric with CouchDB support, then

you can do a lot of rich queries on the using composer as well.

So, you can perform complex registry queries right. So, we can say give me between this

range and that range give me all the elements in this range. So, there are a set of complex

queries it can perform on the assets. That you have you have that you have defined. And they

can be invoked from within your application that you are developing. But the only

requirement is that you have used CouchDB as the ledger for the underlying fabric.

(Refer Slide Time: 25:22)

So, this is the composer playground this is a quick link for you to quickly go try it out

yourself. The composer playground is just JavaScript interface it actually does not connect to

it, if you have the option of connecting to a fabric in the backend. So, you can have a actual

blockchain instance in the backend. But for quick quickly trying out certain things just to see

how application development works. You not even need a fabric network. So, you can do it

completely just simulate things in the browser. So, it gives you a way for you to test what

else.

And it is a easy tool for you to develop composer models and scripts. It is define by the

application developer. So, you can go online easily and you can define your assets

participants and transactions. You can define your scripts for your functions and you can

easily test it as well by invoking a few transactions against it. And you can also install this

whole code that the playground code on your laptop. And you can do it in your at your region

as well you do not even need an internet connection after that.

(Refer Slide Time: 26:26)

So, I mentioned earlier that we do have composer has support for multiple editors. Here I am

just highlighting the visual studio tool, where composer has a an extension for visual studio,

that provides easy development capabilities right. So, it is gives you full syntax highlighting

for composer. So, in this case all the things like keywords like assets enum transaction they

will all be highlighted for you for easy use.

And it also has abilities for code completion. So, it will automatically complete variable

names. And so on it has validation support. So, while you are typing out your code actually

tell you if you are making a syntax error or something like alright. So, it can will gives you

validation support when you are defining your models your queries and your ACL's. So, that

is the inline error reporting I mentioned. So, while you are typing out you can quickly get

hints as to if you doing something wrong. You can have control plus space for code

suggestions. So, you can get snippets directly. And you can also get UML diagrams and

models generated automatically right.

So, this is available on the code visual studio code market place, you can download it from

there and you will be of to go very quickly.

(Refer Slide Time: 27:38)

Creating a end user application. So, this look as I mentioned the all the composer code is in

JavaScript your transactions and all that are specified in JavaScript. For doing for writing

these things and connecting with composer runtime, you need the composer client module

that is available as an NPM. And a composer uses loopback to automatically generate restful

API's for your assets. So, for each of your assets it automatically generates crud operations to

create update delete modify these assets, it gives you a an automatically generated code for

these rest API’s.

And this also has a way for you to generate angular 2 code. You can generate both CLI code

as well as and an angular 2 code. For you to stand up a user interface very, very quickly. So,

once you have defined your models and transactions you can use these to generate a restful

API and then you can create a user interface that calls that restful API.

So, you can go list your assets, you can go create a new asset, you can modify that asset you

can delete that asset. All those there is a easy user interface that is also generated in angular 2

for you so, that can be a starting point for you to develop the presentation logic or user

interface for your application.

Finally, composer has debugging support as well right.

(Refer Slide Time: 28:56)

So, it has the ability something called playground historian in composer. That allows you

view all the transactions you have performed. And you can see what happened when what is

the particular transaction that happened will give you a full listing of everything you have.

And that can be very helpful for you to debug your code. And it also gives you a diagnostics

framework for application level traces. So, you can there is a it is uses the Winston node js

logging framework. So, as part of your transactions you can quickly get access to the log set

were generated.

So, using the debug environment variable you van setup the logs. And you can go lookup a

transaction you can go lookup the logs quickly pertaining to that transaction that will help

you debug quickly. And in addition apart from just your composer code or anything that you

are writing in your application, it is also possible to get the chaincode level tracing. So, you

can exactly see what is happened in the fabric layer as well, and you can track what is

happening on the blockchain. And all of these is very well documented documented. So, you

can go lookup composer documentation and see some of these features and read more about

that.

So, that concludes the first section of composer itself.

(Refer Slide Time: 30:12)

So, there is a easy video the quick video about composer and some of it is features so, it is 6

minutes. But if you want to get started with using composer, I would definitely recommend

you to both try out the playground as well as see this about one hour one-hour lecture alright.

It gives you all these concepts defined, and it gives you a even a demo of all of these things.

And I would also like to highlight this other very interesting project called the accord project.

It was started by a startup called clause, clause dot IO.

And what it tries to do is it tries to build this notion of legal smart contact. So, what does it

make for a smart contract to actually be recognized the something legal. So, it is a very

interesting project, I would encourage you to check it out. It is closely related with composer

I would say in terms of the principle but here they are specifically looking at legal contract. I

would encourage you to take a look at that. With that next lecture we will look at how you set

up a composer network itself. So, see you soon.

Thank you.

