
Blockchains Architecture, Design and Use Cases
Prof. Praveen Jayachandran
Prof. Sandip Chakraborty

Computer Science and Engineering
Indian Institute of Technology, Kharagpur

Lecture – 24
Hyperledger Fabric Network Setup_Lec_06

Hello, everyone and welcome back to our next lecture in our block chains course

Architecture Design and use cases. Before we start I must thank a lot of my colleagues at

IBM who have made some of these presentations available over for a period of time. So,

I have collected this from many different sources, but a lot of the IBM heirs have helped

to prepare some of these lights. So, have many things to say to them. So, we have been

looking at some of the details of hyper ledger fabric itself and in this lecture were going

to talk about how you can set up your own fabric network.

(Refer Slide Time: 00:39)

So, what are some of the things it takes what are the steps it takes to set that up.

(Refer Slide Time: 00:55).

So, first step is like I mentioned earlier is the ordering service that is the main component

that is going to determine how transactions are ordered in the network and that will be

the first thing you set up or you bring up in the network. So, it could be single solo

ordering net node or it could be a distributed set of nodes that are running an ordering

service let us say a kafka consensus that they execute. So, that is the first ordering

service that that is the first component that you bring up.

And the simple CLI command for you to bring that up or you can also use the SDK that

is available in multiple languages in java note Js and python.

(Refer Slide Time: 01:31).

So, once the ordering service is up, then the next step is to configure and start peer notes.

So, you could have multiple organizations that are part of this block chain network each

of those organizations could run one or more peers. So, you will have of course, all the

identities have to be set up when I say, you are bringing up each of these entities I am

assuming that we or when you brought up the ordering service the identity for the

ordering service is set up and likewise for the peers each of these peers in their respective

organizations have been have their identities right with an MSP and provided by your

certificate authority.

So, each of these peers have to be brought up. So, again there are simple CLI commands

and SDK commands that you can use to bring these services up. So, each of these peers

like I said could belong to different organizations. So, that now the peers are up, but they

are still not can to each other in anyway.

(Refer Slide Time: 02:23).

Once you bring up these pure processes, the next step may be to install one or more

chain codes on these piers again when I say install this is just to bring up the process that

will run the business logic again this is not connected in any way to the rest of the

system. So, this pure will then have a container that runs the chain code A again another

container to run chain code B likewise for all the other peers.

Again a very simple command both from CLI and from SDK, will enable you to set up

to install these chain codes on the respective peers. And also note the fact that the chain

codes can be installed on only a subset of the peers in the network it does not have to be

installed on all the nodes. So, you can decide who are the endorsing peers for each chain

code and you can install the chain code only on the endorsing peers. So, this just this

does give you a notion of privacy in the sense that the code itself the business logic that

you are executing in a decentralized fashion, can be executed amongst a subset of the

organizations you have in the network, it does not have to be all the organizations or all

the peers ok.

So, now you have the ordering service, you have a bunch of peers, you have chain codes

installed in them now is when you start constructing the network itself and the

communication between them.

(Refer Slide Time: 03:45).

So, you are going to be creating some channels the ordering service is where these

channels are configured. So, of course, you could also have multiple ordering services

for these different channels, but in this example let us assume that there is just one

authoring service in again that ordering service has multiple nodes. So, it is weird

ordering service and it has multiple channels. So, in this case there is a red a channel a

blue channel and a yellow channel.

So, all these channels are configured with the ordering service and when you are

configuring the channels with the ordering service you are also going to be joining peers

in that channel as the next step.

(Refer Slide Time: 04:18).

So, the channel configuration will include the set of organizations and set of peers there

are part of that channel. So, in this case E 0 and E 2 have joined the blue channel E 0 and

E 1 have joined the red channel E 2 and this P 3 which is not an endorsing node have

joined the yellow channel and actually they yah the blue channel also has E 1 and P 3.

So, the blue channel has E 0, E 1, E 2 and P 3. So, all the nodes are part of the blue

channel.

So, this way it is possible to have different subsets of nodes join different channels and

channels like I mentioned are a notion of provide a notion of privacy across the different

transactions and the different state you want to maintain in the network. So, the same

peer can be part of multiple channels. So, again there is a simple CLI command and

again you can do the same thing same thing using SDK. So, it could be a client

application as part of setting up the network could be executing all of these steps or it

could be different nodes. So, basically these nodes are part of different organizations

their respective client applications would have to join their peers to the channel.

(Refer Slide Time: 05:33).

The next step is to instantiate the chain codes on channel. So, you have to say you have

the chain codes running on the peers, but you have to say which chain code belongs to

which channel. So, again this is highlighted; if you see as the border color here in each of

these boxes if you take the channel red then chain code B is part of the channel red. So,

the chain code B is instantiated on that channel. So, it will have it is ledger and it can add

transactions to the chain to the block chain in the red channel.

Likewise the yellow channel again has chain code B alone. So, the yellow channel has

only one endorsing P 1 which is E 2 it alone runs this chain code B and it is connected to

the yellow channel. So, it will have it is lecture and a block of transactions. The blue

channel has all the peers and chain code A is part of the blue channel. So, you can see the

chain code A has this blue border. So, the chain code will be part of the blue channel and

all transactions on the blue channel will be functions that are invoked on chain code A.

So, this is just an example network to show the flexibility of the system. So, you can

define who which peers you can define the channels first, you can define which peers

which organizations are part of which channels you can also define which chain codes

are part of which channel and all of these are segregated separately. So, each chain code

is a chain code state is separate from another in each channel right. So, that is how it is

maintained and all the chain code state across the peers in a channel are all consistent.

So, all the state will be maintained consistent consistently using consensus again a very

simple CLI command is available for you to execute and setup set this up.

So, with this if you see the whole network is set up and now users can perform

transactions on these on this network. So, on the red channel users can invoke functions

of chain code B again same thing for the yellow channel users can invoke functions of

chain code B on the blue channel they can invoke functions of chain code A. So, that is

how it is separated out.

(Refer Slide Time: 07:50)

I mentioned that it is possible to have just a subset of the peers executing chain codes on

each channel and that is governed by the endorsement policy right. So, the endorsement

policy states which peers have to execute an endorse a transaction before it will be

deemed as valid to be added to the block chain.

So, each chain code defines an endorsement policy and this can be different for each

channel that the chain code belongs to now there are two important system chain codes.

So, these are the system chain codes are chain codes that are implemented internal to

fabric itself that perform certain important functions we will talk about two of these

system chain codes, there are I think three or four more of these system chain codes that

have been added again to these system chain codes also provide the notion of plug

ability. So, although I call I mentioned these two system chain codes, you can always

think about other implementations with other properties that these two system chain

codes provide.

So, the first is in chain code that is of importance is the endorsement system chain code

what it does is. So, this system chain code is going to be running within every endorsing

peer. So, when a client submits a transaction to appear. So, this is an endorsing peer here

when a client submits a transaction to the endorsing peer. It is a transaction that is

invoking a particular function that is in the chain code and it first comes to the ESCC.

So, the ESCC the endorsement system chain code is the one that will invoke the chain

code will execute the transaction, it will compute the read write set of the transaction. So,

that what is the state information that was read in the chain code in that function? What

is the state information that was written? All of that is captured by the ESCC and it will

then sign the proposal response.

So, it will then sign this and say ok. So, when I run this transaction, this is the read set,

this was the write set and here is my signature saying that I was the one who run this and

I endorse this. So, this is done by every endorsing peer and this system chain code does

that signing part of it. Now client collects all of these signatures from multi layer all the

endorsements it will then submit the transaction to the order. The order will include it in

the block, deliver it to the peer and now all committing peers are now going to do certain

functions right.

So, that is where the validation system chain code comes in which is going to validate

these endorsements. So, what does the validation system chain code do it will look up the

policy for this particular chain code. So, this policy might say organization one two and

three in the network have to sign this transaction.

So, it will then check whether those three signatures are available the other policy we

look at some of these policies that how the syntax works for some of these policies, but

the validation system chain code does the job of going through the endorsements that of

that are available in the transaction that have been submitted with the transaction and

seeing if that set of endorsements satisfying the policy that was specified for the chain

code in that channel.

So, that is the validation system chain code. Now it is always possible that the

endorsement, you want to use some other logic for the endorsement or for the validation

you want to use some other logic for the validation or even you might want to implement

that in a different language rather than go lang. So, all those possibilities exist and this

whole module is pluggable and you can bring in your own implementation for these

things based on your application needs.

But for most applications we deem that these existing implementations of endogenous

system chain code and validation system chain code will be sufficient for most in most

applications that we see in the enterprise world to give you a comparison with bit coin.

The validation that bit coin does in some sense is the validation whether the transaction

is a duplicate or not. So, this is the UTXO model whether the transaction is unspent

amongst all the previous transactions that this network has seen right. So, that is the

UTXO model all it does is verify whether this transaction is unspent or not.

So, here we are not following the UTXO model. We are following what is popularly

called as the state based model. So, the validation is based on state information that we

are storing in as part of the ledger and the validation here specifically one part of the

validation is the validation of the endorsement policy. So, this is different from what bit

coin has and this is very specific to hyper ledger fabric and it is also one of the

differentiators of hyper ledger fabric.

(Refer Slide Time: 12:44).

So, looking at a little more detail about the endorsement policy itself, what how do you

define it how do you specify it? When you are instantiating a chain code this is just an

example of a chain code instantiation, you are providing first the channel on which you

are instantiating this chain code mycc is the chain code name you have a version for the

chain code.

So, it is possible for you to deploy multiple versions of the chain code that may be

improvements of the chain code over time maybe changes in the business logic can be

captured. So, the chain code itself can follow full lifecycle and there is a separate system

chain code for that a life strike a life cycle system chain cod, that manages the lifes life

cycle or the different versions of a chain code so, that is a separate, so, a version of the

chain code

And then you have a particular code that it refers to. So, that is the particular spot

contract that implementation and then the input arguments for that for that chain code

right. So, these are the initialization arguments. So, it is called the you calling the init

function with a certain set of parameters. So, this could be any parameters that you

choose to pass at the time of initializing the chain. So, this chain code takes for

initialization arguments. So, I think this is this chain code example 0 2 if you are looking

up the fabric code and the examples there, it actually sets the account balance of a to be

100 and an account balance of b to be 200. So, that is the initialization that were doing

and the – P option here gives you the endorsement policy that is the that is what we are

looking at here.

So, what is this endorsement policy says the endorsement policy says that Org1MSP any

entity of Org1 can sign this since I can sign this transaction. So, this is the and policy. So,

it is possible the syntax for the internal policy is any expression are using AND and OR

gates and using any principles or a nested expression. So, you can; I can say

Org1MSP.member and Org 2 MSP members.

So, any so, both of these entities must sign and the principles that I am called out here is

really a particular role it could be member it could be admin these are the supported roles

today and the MSP is a particular MSP ID. So, there is an MSP called Org1MSP and

there is a role called member within the Org1MSP and anyone who has the member roles

in Org1MSP can sign this can endorse this transaction.

Now it is also possible to have a N out of K policy. So, that is possible to say 3 out of the

5 organizations you know you specify the list of five organization and say any 3 out of 5

if they are signing this transaction, then I will consider that as well. So, the N out K

signing is also possible that is also part of the policy syntax.

(Refer Slide Time: 15:49)

Here is just some examples of policies. So, one example could be AND of Org1member

Org 2 member and Org3member. So, in this case Org1 Org2 Org3 are really MSP

identifiers for their respective organizations member is the role within those

organizations. So, a member of Org1 has to sign a member of Org2 has to sign a member

of Org3 has to sign all of these together now will satisfy the policy.

The other policy you can do is or I can say Org1 member or Org2 member must sign this

transaction that will be the endorsement and it is also possible for you to include

arbitrary combinations of AND and OR like in this example what this example. Here this

example says is first let us look at the inside thing Org2 and Org3 must sign it Org1 must

sign it. So, that is the condition. So, it is either Org1 or a combination of Org2 and Org3

must endorse this transaction or it to be valid.

So, you can have any arbitrary combinations of this of this endorsement. So, based on for

each transaction who has signed it the specific members who have signed it then we will

compare as part of the validation system chain code we will compare it with this, this

logic this policy that you have specified and validate whether the policy is satisfied or

not. So, this is just a satisfying satisfaction Boolean satisfaction.

And if it is satisfied then we will admit that into well admit that as a valid transaction.

So, each at the time of the validation stage each peer is going to execute this and validate

whether it is satisfied. So, that again likewise there can be out of K policy also I have not

given the example here, but you can look up the documentation for that. So, it is also

possible to define say N out of K members in the network have to sign.

(Refer Slide Time: 17:46)

So, this actually concludes all of the material for understanding what really fabric is how

it is designed how the network setup is made. So, there is a lot of oh that is available for

you to quickly understand get to the next level of detail right. So, the homepage for

fabric itself is under the hyper ledger project it is available there. You can look up the

code and there is some interesting examples that are that are shared along with the code.

So, there is a gerrit repo as well as a github mirror of that gerrit repo.

Some of the latest docs this keeps updating based on new features new features are

getting added almost on a weekly basis and there are multiple features that are being

proposed actively and they are also being developed activety. So, we are right now in

version one point one of the fabric version one point two is being planned and there will

be a later release later this year there is a community chat.

If you are a developer you want to you have some issues with some understanding or

some part of your code is not working you have a defect that you want resolved you can

always go to chat and there is a very active community out there that takes an interest in

answering in others questions.

So, very active community that that helps all developers mutually so, and there is also a

wiki, where you can also find more information over the next few lectures what we will

do is we will go through some demos, I will try and show you fabric in action. So, there

are many ways in which you can set up fabric you can set it up on the cloud very easily

you can set up on your own laptop or on your favorite development environment set of

VMS Docker containers wherever you want to set up there are instructions for you to get

started very easily. So, you can set it set up your network in a matter of maybe tens of

minutes maximum and on the cloud it is just a couple of clicks you can have your you

can get going.

So, I will show you some of those and I will also show you how a network is set up

maybe show you some examples of how a smart contract is written. So, well go through

some of those demos over subsequent lectures.

(Refer Slide Time: 19:56)

So, to conclude some of the again the fun reading section some of the additional

information you can get. There is very easy instructions to if you are a do it yourself

person kind of person very easy instructions for you to set up your own network in any

kind of development environment, any kind of operating system that should be. There is

also as a quick start guide for developers on how to you; how you can get started having

very easy instructions for you to get started. So, with that thank you that concludes our

lectures on hyper ledger fabric, see you in the next set of lectures for seeing some demos

of fabric in action.

Thank you.

