
Block chains Architecture, Design and Use Cases
Prof. Sandip Chakraborty

Department of Computer Science and Engineering
Indian Institute of Technology, Kharagpur

Lecture- 18
Permissioned Blockchain – V

(Practical Byzantine Fault Tolerance)

 (Refer Slide Time: 00:24)

So, welcome back to our course on Blockchain. So, in the last class, we were discussing

about the Consensus Algorithm for Permissioned Blockchain environment in a generic

distributed system and we have looked into the concept of byzantine general problem

and how can you achieve consensus in a synchronous environment with the Lamport’s

algorithm. So, in that particular algorithm we have seen that if you have f number of

lieutenants is faulty, then with 2 f plus 1 number of lieutenants in the system you will be

able to achieve consensus in the system. Otherwise if the commander is faulty in that

case also it 2 f plus 1 number of lieutenants. You will be achieved to reach consensus

with within synchronous system.

But as you have mentioned earlier that our real systems are not always synchronous, the

real systems behaves in asynchronous way; where there is no guarantee that you will

receive a message within certain timeout duration. So, in this class we will look into that

how can you still receive consensus or at least you will be able to ensure the safety

property of a consensus protocol in the presence of faulty nodes. But remember that in a

asynchronous environment, we have the impossibility theorem, that states like in a pure a

synchronous environment, if you have at least one number of nodes are faulty or if you

have even a single faulty node, it is impossible to reach into the consensus.

So, that is why in this consensus algorithm that we are going to discuss which we call as

the, practical Byzantine Fault Tolerance Consensus Algorithm for ensuring the safety

property we consider a complete asynchronous system or a pure asynchronous system.

But we cannot ensure the liveness property because in that case it will violate the

impossibility principle.

So, that is why to ensure lightness, we relax the asynchronous nature or asynchronous

guarantee of the system and we will see that well with certain relaxation in the

asynchronous condition which we call as a week asynchronous in the system. So, with

week asynchrony in the system which is not a pure asynchronous system, but a

relaxation on the asynchronous system will be able to ensure safety all the time and we

will be able to ensure liveness for most of the time

So, let us look into this algorithm which we call as the practical Byzantine Fault Tolerant

or PBFT algorithm.

(Refer Slide Time: 03:02)

So, this algorithm is termed as practical because it ensure safety over on asynchronous

network, but not liveness on a pure asynchronous network, otherwise it will inviolate the

impossibility theorem or the impossibility principle. So, to ensure liveness, we have a

weak asynchronous assumption where we deviate from a pure asynchronous system. I

will discuss all this construct in details, then the system is able to support Byzantine

failure and it has low overhead. So, that is why we called a system as an asynchronous

system.

Now, this PBFT algorithm, it is applied for many real applications. It is widely applied

for the permission block chain model like the standard meant IBM’s open chain, hyper

ledger this kind of platform which uses permission blockchain environment. So to ensure

consensus among the participants in a closed environment, we apply this kind of PBFT

type of algorithm. So, we will go to the details of this PBFT algorithm.

(Refer Slide Time: 04:13)

So, here also we are having this Byzantine modern the Byzantine Fault Tolerant Model.

So, the broad idea of the system is something like this. So, in this system there is a client,

the client submits the request to the commander. So, here the client if you think about

from the Blockchain principle that clients are the individual Blockchain clients who are

submitting the transaction and the commanders are certain nodes in the system, who are

responsible for ensuring consensus in the system.

And you have multiple nodes, so this commander in cooperation with the multiple nodes

in the systems that have been shown here using blue lines. So, with the help of this

multiple lieutenants in the system the commander come to the consensus and once the

system comes to the consensus, it sends a response back to the client whether the system

has committed based under consensus algorithm or not.

So, you can map this entire principle in a block chain environment, where the client

submits a transaction and there are certain nodes in the network; who are designated for

running the consensus algorithm. Those nodes collectively design the consensus

algorithm or run the consensus algorithm and they decides whether the transaction can be

committed or not. If the transaction can be committed in the system, then that response is

sent back to the client. So, that way this entire system works.

Now, as you have done as we have assumed that it is asynchronous distributed system

because it is an asynchronous distributed system. You can have delay in transmitting the

message and you can also receive out of order messages. Then the system can have

Byzantine failure like the arbitrary node behaviour. So, some nodes can vote for a

transaction and against for a transaction. Additionally this PBFT algorithm it also

supports privacy over the system.

So, it ensured that the messages are tamper- proof; it applies a hashing technique similar

to Blockchain. We will discuss that in details and it also applies the authentication

technique through this digital signature mechanism. So, that none of the messages

transfer from individual nodes in the system can be tampered or can beit stopped.

(Refer Slide Time: 06:41)

So, that is the system model, so we consider a state machine a replicated state machine

concept that we discussed earlier in the context of distributed consensus. So, we have a

state machine which is replicated across different nodes and we have 3f plus 1 replica.

So, this number of important this number is important where, we are deviating from our

consensus algorithm in a synchronous environment. So, what we have seen that in a

synchronous environment if you have f number of faulty nodes; then you require 2f plus

number of lieutenants or 2f plus number 1 number of nodes apart from the commander to

ensure consensus.

But in case of asynchronous network, we require 3f plus 1 replicas. But why do you

require 3f plus 1 replicas? At a point while we will discussing about the algorithm, I will

discuss about this particular assumption that to ensure f number of faulty replicas. So,

why do we require 3f plus 1 number of replicas which will ensure you having consensus

in the system.

Now, these replicas they move through a successive of configuration known as views.

So, this views are something like that among this set of replicas; if you try to map it in a

Byzantine general model, we have this commander and we have individual lieutenants

So, similarly we have among these replicas, we have one primary and multiple other

backups So, that way this setup of primary and a backup we consider them as a single

view.

So, assume that you have 4 different replica here and among these 4 different replicas,

you have this replica which has been designated as a primary replica and others are

designated as a backup replica. So, this replica takes control of the state machine and

these other replicas stored a backup of the state machine.

Now this particular set of configuration that we call as one view. Now in different views

the primaries and the backups can change it may happen that in a different view. So, in a

different view, this primary becomes so this primary becomes a backup and another

backup becomes a primary. This is a second view so that way the replicas, they move

through a successive set of configurations which are known as views, and 1 replica in a

view is primary and others are known as backup.

(Refer Slide Time: 09:38)

So, these views are changed when a primary is detected as faulty. So, whenever the

backups, they collectively detect that a primary is faulty will look into this view change

mechanism. Then these views are changed and every view is identified by a unique

integer number v, with a unique integer number v and only the messages from the current

views are accepted.

So, if there is a view change, then the messages which have been broadcasted in the

previous a view and because of the asynchronous nature of the system, it may always

happen that; you are receiving the message, a delayed message, or out of order message;

and you are receiving message from a previous view. So, the messages from the previous

views are discarded and only the messages from the current views they are accepted.

(Refer Slide Time: 10:31)

So, let us look into a simplified view of this PBFT algorithm. So, this PBFT algorithm

was proposed by Castro Miguel and Barbara Liskov that was first came into OSDI in

1999 and the title of the paper was Practical Byzantine Fault Tolerant. So, I suggest all of

you to read this paper in details. So, the idea of this algorithm is as follows: so the client

sends a request to the primary. So, the client executes some kind of service operation like

in case of your shared storage the client executes a write instruction, or in case of a block

chain environment the client initiates a transaction. So, all this and request they are

moved to the primary.

(Refer Slide Time: 11:21)

Then the primary it sends this request to all the secondary replicas. So, this primary it

multicast a request to the backup; so, these backups are the secondary replica whatever

you call it. So, this information is sent to the backups.

(Refer Slide Time: 11:38)

Then, these backups they execute the request and they try to comes to the consensus

based on this PBFT algorithm that we will discuss shortly. So, after executing the request

either the client request is successful or the client request is failure say. For example, in

case of shared storage architecture, if that client is trying to initiate a discrete operation

either that district operation was successful. If it is able to write that instruction correctly

into every individual replica, then it is successful; otherwise it will be a failure. Similarly

for the block chain perspective a transaction if it is a valid transaction if all the backups

or all the replicas decide that the current transaction is a correct transaction. Then it sends

a success or a commit message to the client, otherwise it will send a failure message to

the client. So, the backups they will execute the request and accordingly send a reply to

the client.

(Refer Slide Time: 12:48)

So, the client will receive all these replies. Once the client receives all the replies, so the

client basically waits for f plus number 1 of replies from different backups with the same

result where f is the maximum number of faulty nodes, faulty replicas that can be

tolerated. So, once the client receives f plus 1 replies from different backups with the

same result. So, these keywords are important that the client need to receive f plus one

replies from different backups and the results are same; that means, the client can decide

that it has got majority of the correct faulty.

So, remember that you have in this PBFT algorithm; you have 3 f plus 1 number of

different replicas. So, out of this 3f plus 1 number of replicas; you have f number of

replicas which are faulty, but whenever the client is receiving the message if it gets f plus

1 message with the same result; that means, the majority of the nodes here actually not

the majority of the nodes the correct nodes majority of the correct nodes they are sending

a reply to him. So, when majority of the correct nodes are sending a reply to you then

you can say that well the system is reached to a consensus and the client accept or

commit that particular message.

So, in other words, you have 3f plus 1 number of replicas in the system. Out of f number

of replicas are faulty and 2f plus 1 replicas are correct. So, if you are receiving f plus 1

replies from different backup with the same result, then you can be guaranteed that well

you are receiving a result which belong to the majority of the correct; the majority of the

correct replicas. So, if you receive a message from majority of the correct replicas you

can assume that message to be the consensus message and you can include it the

included to your system by committing that particular request ok.

(Refer Slide Time: 15:13)

Now, this entire consensus algorithm in PBFT it works in three different phases: Pre-

Prepare, Prepare and Commit. So, we will look into these three different phases in

details. So, in Pre-Prepare Phase, the primary it assigns a sequence number. So, initially

the client has sent a request to the primary. Once the client has sent a request to the

primary, then this Pre Prepare Phase starts in the Pre Prepare Phase the primary it assigns

a sequence number n to the request and multicast a message called PRE – PREPARE

along with certain parameters to all the backups.

So, let us see what are these parameters. So here v is the current view number. So, you

are ensuring that the message that you are going to receive it is from the current view.

Then n is the sequence number, n is the message sequence number that the primary has

included in the message, d is the message digest. And this entire thing entire pre prepare

message it has encrypted with the primary key with the private key of the primary. Now

if you remember, the digital signature method that we have discussed during the first

flew few classes.

So, whenever A is sending certain messages to B and A has its own primary key, say

sigma A is the primary key for A and say pi A is the public key for A. So, A has two

different key; one is a private key another is a public key. So, A can encrypt a message.

So, it can encrypt a message with this private key and at the other end B can decrypt this

message with the public key.

Now, these particular mechanisms works like a digital signature and it ensures that,

whatever message you are receiving from A that message has actually originated from A.

So, with this architecture this digital signature architecture you ensure that well this Pre-

Prepare message is actually coming from the primary because it is encrypted to it the

private key of the primary.

And here we put the message digest because if you again remember the digital signature

method rather than putting the message here because the message size is long. We apply

the hash based technique to reduce the message size and rather than putting the message

we put the message digests say m d star digest of the message, which is encrypted with

the private key or primary.

So, the similar concept is applied here with the message that we are transmitting here.

The message m you also transfer the message digest and the entire thing encrypted to it

the private key of the primary. So, that all other backups so whenever they will decrypt

this message with the public key of primary, they will be able to know that this particular

message has been originated from primary and it corresponds to the message which has

been sent. So, this is the pre prepare message that is sent by the primary to all the

backups after assign the sequence number n.

(Refer Slide Time: 18:41)

So, that is the thing in Pre-Prepare. So, once that client shares the request then in the Pre-

prepare message, you broadcast this pre prepared message to all the secondary.

So, here in this example we are assuming that once again there is faulty. So, we have 3f

plus 1 number of different replicas. So, we are considering here f equal to 1 we have 1

faulty replica which is history. So, we have a total of 4 different replicas 1 primary and 3

backups. So, in the pre prepare phase that client assigns a unique sequence number to the

request message and broadcast that request message to all the replicas.

(Refer Slide Time: 19:24)

The second phase of the Three Phase Commit Protocol is the Pre- prepare. So, before

going to the second phase of the Three Phase Commit Protocol, so, in the Pre Prepare

Phase; so, this Pre Prepare messages they are used as a proof that the request was

assigned the sequence number in the view v. So, the message is in the current view and it

has been assigned the unique sequence number.

Now a backup it accepts a pre prepare message if the signature is correct and d h the

digest for m to verify the digital signature that it has been originated from the primary

the backup is in view v. So, you are in the latest view it has not received the different pre

prepare message with the sequence number n and view v with a different digest.

So; that means, the message has not been tampered if the message has been tampered;

that means, the digest would be different and the sequence number is within a threshold.

So, it also ensures that this sequence numbers are not too old, such that there is no kind

of replay attack in the system. So, an attacker is not getting that message or just

capturing the message which was being transferred by the primary and replicating it after

some time. So, it is not a replica. So, then the backup accepts a pre prepared message

(Refer Slide Time: 20:44)

The second phase is the Prepare phase in the prepare phase this secondary it sends a

prepare message to all the replicas

(Refer Slide Time: 20:58)

So, let us look into this prepare message in details. So, if the backup it accepts the pre

prepare message, they need to enters this prepare face and in this prepare phase it

multicast a prepare message.

So, the prepare message all has the similar set of parameters which were there in the Pre

Prepare Phase, the view number, the sequence number of the message the message digest

along with the identity of the backup who is which is broadcasting this prepare message.

And the entire thing is encrypted by the private key of the backup to ensure it as a digital

signature and these prepare messages is originating from backup i.

So, that is the prepare message which has been broadcasted in the prepare stage. So, a

replica, the replica here can be a primary as well as backup. It accepts the prepare

message if the signatures are correct. So, it is coming from the intended backup the view

number it equals to the current view. So, the message is in the current view and the

sequence number is within a threshold the sequence number is not too old. So, it is not a

replica.

(Refer Slide Time: 22:16)

Now, these two stages the pre prepare and prepare, they ensure that non faulty replicas

they guarantee on a total order of the request within a view. So, it is like that every

individual request they are assigned one sequence by the by the primary. So, once the

primary assigns a sequence to individual messages or individual transactions which are

coming from the client. So, all these messages are ordered based on the sequence number

which is assigned by the primary.

So, all the backups they process the messages in the order of that sequence number. So, if

a sequence number has along with; if a sequence number has is higher than the current

sequence number then that one is processed first. So, in that order of the sequence

number the messages are being processed.

So, after this prepare and the pre prepare stage once every replica gets this prepare

message, then it commits a message if 2f prepare messages from different backup it

matches with the corresponding pre prepare. So, whatever has been transferred in the pre

prepare message, you have received a prepare message with the same message and the

same message digest and it is coming from at least 2f number of prepare message.

So, you have deceived 2f such message. So, here you have a total of 2f plus 1 votes that

you have deceived in total 1 vote is from the primary and that you already have and you

have got 2f number of votes from other replicas.

(Refer Slide Time: 24:17)

So, if you remember that whenever you are you are waiting for this kind of vote. So, here

in this context, here we in this context let us discuss that why do we require 3f plus 1

number of replica to ensure safety in asynchronous system when there are f number of

faulty nodes.

Now, here the thing is that if you have 2f plus 1 replica to have a majority decision, you

need to ensure that you have received all the votes and out of all the votes at least f plus

1 votes are f plus 1 votes are giving the majority decision. So, to take a majority decision

with 2f plus 1 number of replica, you need a vote from all the replicates. So, this boils

down to a synchronous environment where you need to wait for to get the message from

all the replicas.

Now, in case of asynchronous system, you may not receive the votes from certain

replicas because of the delay or you may receive out of order messages in that case if you

just receive f plus 1 vote. So, that f plus 1 vote does not ensure majority. So, if you

receive continuous f plus 1 vote and that f plus 1 vote are giving you the same instruction

or the same information, then you can accept that vote, but it may happen that out of this

f plus 1 vote certain votes are coming from the faulty node.

So, you do not know whether those votes are coming from the faulty nodes or from the

correct nodes. So, whenever you have received certain f number of force those f number

of votes may be coming from the faulty nodes and all the faulty nodes are behaving

equally. And they are possibly saying say in the Byzantine general problem say, they are

saying about literate.

Now, if you get retreat message from f number of nodes you really do not know that f

number of nodes are faulty or some other nodes are faulty or they are correct. Now say

you have received f retreat message and after that you have received one attack message.

Now if you receive a free treat message and one attack message, you cannot be sure that

whether those f number of votes that you have received those are from the normal node

or from the byzantine nodes because you know that there are f number of faulty nodes in

the system and this is an asynchronous system because this is an asynchronous system it

may happen that you have also not received certain votes

(Refer Slide Time: 26:56)

Now, to ensure this whenever you are not receiving a vote it may happen that, that

particular node is faulty and it has not forwarded a vote at all. So, a faulty node here has

the option that it will not forward any vote because it is an asynchronous system either

that is the option. Or the second option is like the node is not faulty the node is a correct

node it has sent to a vote, but that vote is strapped somewhere in the network. So, you

have not received that vote.

So, that can be the situation where the vote got delayed, but if you receive 2f plus 1 vote

and whenever you have received 2f plus 1 vote and if you see that well out of that 2f plus

1 for that you have received out of them f plus 1 or it the majority if that is the case then

you can guarantee that well whatever the majority vote says out of that 2f plus 1vote that

you have received that is the consensus.

So, it is like that to have the consensus in the system, you can have 2f plus 1 number of

correct nodes and f number of faulty nodes because you may not receive the votes from

certain number of correct nodes and you can taught you can tolerate such nodes or you

can tolerate such kind of votes after up to f number of times because you can have f

number of faulty votes.

So, whenever you are receiving the first f votes you do not know whether those first f

votes are coming from a correct node or from a faulty node So, that is why we require 3f

plus 1 number of different replicas in a system where f number of replicas are faulty

replicas and 2f plus 1 number of replicas are correct replicas. In this that particular case,

if you are receiving f plus 1 votes and that f plus 1 votes are seeing the same thing like

all the f plus 1 votes are saying that attack. Then you can decide and unanimously that

well in your system there can be f number of faulty nodes. So, what f plus 1 force you

are getting that gives you a kind of correct result or a majority result because that is

going to be said by all the correct nodes.

So, to say it in other word if you are getting f plus 1 say f plus 1 number of votes and all

the f plus or 1 number of votes are attacked. So, out of this f plus 1 number of votes you

know that f number of votes can be faulty. So, even if out of this f plus 1 attack votes f

votes are coming from the malicious or the Byzantine nodes and you do not able to

predict that what the Byzantine nodes are going to say there is at least 1 node which is in

the form of attack and it is a non faulty node. So, if it is the vote for an on faulty node

then all the non faulty nodes in the system they are going to vote for attack. So, you can

correctly decide that attack is your final consensus value. So, that is why we require 3

plus 3f plus 1 number of replicas to detect f number of faulty nodes.

(Refer Slide Time: 30:22)

Well at the end every note multicast the commit message to all the replicas include

primary.

So, whenever you have received 2f plus 1 number of such commit messages from that 2 f

plus 1 number of commit message. If f plus 1 from the majority decision it can decide

that whether; the transaction has been accepted or whether the right instruction that

request that has been sent by the client, whether that request has been accepted or not

because you are getting on that a majority faulty.

(Refer Slide Time: 30:57)

So, that is the final commit message after final getting the commit message. every

individual node takes a decision and it sends that reply back to the client.

(Refer Slide Time: 31:08)

Now, let us look into the case that when the primary is faulty so if a secondary is faulty.

So, we have seen that we can tolerate up to f number of such failures and within this f

number of failures if f number of secondary’s or the backups have are faulty nodes the

system can tolerate that, but what if the primary is faulty. Now in that case the non faulty

nodes they detect the fault. So, the backups they detect the fault collectively and they

together start a view change operation.

So, they remove the primary from the system or they consider that the replica which was

designated as the primary in view v that will get changed another replica from the

backup that will be designated that is the primary.

(Refer Slide Time: 31:59)

Now, this view change protocol it ensures liveness, but to ensure this view change you

have to ensure that you will receive the message from all the nodes within a timeout

duration. So, here comes the weak synchrony assumption in the system like to ensure the

safety, you do not require a synchronous assumption.

But to ensure the liveness to ensure that the view change are done at a proper time

interval you have to ensure that all the backups they are able to detect that the primary is

not sending any message within some timeout duration. So, whenever you are putting

this kind of timeouts in the system.

So, here we put a timeout in the system when you put the timeout in a system you have

an assumption that if you are not receiving the message within this duration then you are

considering that message to be lost and the primary to be faulty. So, here we are

deviating from the pure asynchronous assumption.

So, the pure asynchronous assumption says that your transfer of masses can be arbitrarily

delayed, but here we are assuming that it is not truly arbitrarily delayed to ensure

liveness rather to ensure liveness you have certain level of synchrony if you are not

receiving the message from the primary. So, this primary to secondary communication it

is it is a synchronous communication if you are not listening the message from the

primary within timeout duration you assume the primary to be faulty ok.

(Refer Slide Time: 33:41)

So, these backups they starts a timer when it receives a request and the timer is already

running. So, the timer is stopped when the request is executed. So, within that timeout

duration everything is complete and the timer gets restarted when some new request

comes. So, when some new request comes you just look into whether you are receiving

the messages from the primary within that timeout message or not. Now if the timer,

timer express a view v, then the backup starts a view change to move the system to an

under view v plus 1.

(Refer Slide Time: 34:15)

So, on timer expiry a backup stop accepting any new messages; except the normal check

pointing message, the view change message and a new view message. So, only view

change is being performed during that time. Now this view change operation is little

straightforward.

(Refer Slide Time: 34:33)

So, when a primary has a timeout it multicast a view change message to all the replicas

along its certain option. So, it initiates a view change for a new view v plus 1 along with

the sequence number of the last table check 1; that means, it is the sequence number of

the last transaction that is being accepted and then certain sets.

So, this c it is a set of 2f plus 1 valid checkpoint messages it proved the correctness of

this s the correctness of the checkpoint. So, it provides it ensures that the last checkpoint

at this particular node has received that particular last checkpoint is a correct checkpoint.

So, that was based on the normal PBFT safety algorithm. So, it ensures the safety criteria

of the system and this P it is a set containing another set P m for each request m that

prepared at i with sequence number higher than n.

So, it ensures that well certain number of request messages are still flowing in the

network, but you want to initiate of view change. So, whenever you want to initiate of

view change you also embed the request message which have been initiated in the

previous view, but that has not yet committed because once the view change is being

done then those old messages need to be taken care of.

So, because of that this particular set P it embed all such old requests. So, each set P m it

contains a valid pre prepare message and 2f matching of that pre prepare message.

(Refer Slide Time: 36:22)

So, a new view it is initiated after receiving 2f number of view change message. So,

among you know that in the system you had 3f plus 1 number of total numbers of nodes.

Out of them for faulty and the primary has also observed the fault. So, in that case if you

receive 2f plus number of view change message. So, it is like that that 2f messages are

received from the correct replica. So, a view change need to be initiated. So, this view

change operation it takes care of the synchronization of the check point across replicas.

So, that synchronization part I am not going to the details rather keeping it as a take

home assignment for you to read the PBFT paper and to understand this part. That the

view change operation it takes care of the synchronization of the check point, like if may

happen that well certain whenever you are sending the view change message due to the

asynchronous nature of the system. A certain nodes they are still in their pre prepared at

the prepare state and they will also be able to get the correct checkpoints and it ensures

that all the replicas they are ready to start at the new view at view v plus 1 when the

primary has changed from the old primary to another primary.

(Refer Slide Time: 37:48)

So, the safety property all the at the algorithm. So, the algorithm it provides safe if the

non faulty replicas they agree on the sequence numbers of the request that commit

locally. So, we have observed that if you are receiving f plus 1 number of correct

messages or f plus 1 number of messages from the correct replicas. Out of 2f plus 1

message that you are going to receive; if all the replicas relies on the latest sequence

number then that part get committed. So, only the latest sequence number will get

committed in the system they are to ensure the safety proud criteria.

(Refer Slide Time: 38:25)

And the liveness criteria to ensure the liveness criteria we need to ensure that whenever

there is a fault in the primary the system moves from one view to another view. So, in

that particular case a replica it waits for 2f plus 1 view change messages and then starts a

timer to initiate a new view it avoids starting of view change too soon. If you start a view

change too soon, then a faulty replica may just initiate a view change very periodically

and it will hamper the liveness of the system the system will not be able to progress. If

there are frequent view changes, so, to prevent frequent huge changes we ensure that

once you are receiving sufficient number of view change requests then only you change

the view from one node to another node by ensuring that the primary is faulty.

Now, again you have to ensure that the few change are not delayed too much. If the view

change are delayed too much, they will also it will affect the liveness property. So, if a

replica receives a set of f plus 1 valid view change message for the views greater than its

current view, then it also initiates a view change. So, it is like that the view change are

initiated for two different conditions either a timeout occurs. So, you need f plus 1

different timeout to occur otherwise you receive f plus 1 number of different view

change message and once you are receiving f plus 1 different view change message you

also initiate a view change operation.

And this way the faulty replicas they are unable to impede the progress by forcing

frequent view change. So, even if you have a faulty replica in the system you cannot

have very frequent view change in the system.

(Refer Slide Time: 40:12)

So, look into the further details of this paper for the theoretical proof of PBFT.

(Refer Slide Time: 40:18)

And as you have mentioned that this PBFT it has well adapted for consensus in

permission Blockchain environment like hyper ledger and tender mint and well many of

the scalability issue are still there, because it is a open environment and every node meet

to sense that multicast message to every other node in the pre prepare prepare and a

commit message.

So, the system has a high message complexity because of which you have scalability

issues. So, in the later part of the lecture, we will look into the scalability issues in details

and look into several optimization on top of the PBFT protocol which have been adapted

by the Blockchain researcher.

So, this gives us a broad idea about the permission less Blockchain and the permission

Blockchain model different type of consensus protocols which are there. So, from the

next class onwards Praveen will be taking the classes and he will look into the practical

aspects of hyper ledger and different implementation details of Blockchain along with

the industry use cases. So, I will be back after few lectures after few lectures from

Praveen and again discuss about the various use cases and research aspects which are

there in the Blockchain domain. On which we are exploring currently. So, hopefully we

will be enjoying the practical aspects of Blockchain or the implementation details of

Blockchain and the corresponding demos that will be shown by Praveen from the next

lecture onwards. We will come back again after those demo sessions. So, thank you again

for attending we will next look into different use cases of Blockchain.

Thank you.

