
Blockchains Architecture, Design and Use Cases
Prof. Sandip Chakraborty

Department of Computer Science and Engineering
Indian Institute of Technology, Kharagpur

Lecture – 15
Permissioned Blockchain – II (Consensus)

So, welcome back to the course on Blockchain. So, in the last class we are looking into

the permission blockchain settings.

(Refer Slide Time: 00:25)

And, in the context of permission blockchain, the concept of state machine replication

which will help you to achieve a consensus in a permission model.

(Refer Slide Time: 00:37)

So, in the last class we are looking into this concept of state machine replication, where

we have seen that well you do not need to execute a smart contract to all the nodes,

rather you can execute it on a subset of nodes. And then you can ensure that the state of

the contract is getting propagated to all the nodes in the network.

And there are certain consensus mechanisms, which will ensure that well the states

which have been propagated by multiple state machines, or the contract executer that

they are in that on the same page, or there in that correct. So, by applying this kind of

distributed state machine replication technology you can ensure consensus in a

permission blockchain environment.

(Refer Slide Time: 01:26)

So, let us look into that what is mean by a state machine replication. So, a state machine

can be characterized by a set of parameters. So, the set of parameters are a set of states

based on the system design. So, here in this particular example you have three states S 1,

S 2 and S 3, then you have a set of inputs, which will tell you about how the your system

will behave.

So, here are two inputs zero can be one input to this system and, one can be another input

to the system. Then you have a set of outputs. So, here S 3 is the final output of the

system, that that is represented by the state machine, a transition function. So, the

transition function will take acetic state and then input, a sets input and it will produce a

set as the output.

So, here from state S 1 if you take 0 as an input, it produces state S 2 as the output. So,

this is a transition function, then you have output function which may produce the output

of the system. So, this particular example we do not have any output, but it may happen

that well.

(Refer Slide Time: 02:42)

If you have S 1 and input as 0 you are moving to state S 2 that is your transition function

and at the same time you may producing as output 0. So, that that way for certain state

machines you may have a output function and, there would be a designated start state.

So, here S 1 is denoted as the start state of the system. Now, any algorithm any finite

state machine, which represents an algorithm, that can be represented using a finite state

machine.

(Refer Slide Time: 03:20)

So, let us look into one example, where you can represent a smart contract as a state

machine. So, earlier we are talking about this kind of crowd funding platform. So, in a

crowd funding platform, you have a set of fund set of people who have certain funds

available, who are agree to donate the fund if certain jobs are being done.

So, there are the project proposals, which are coming from the proposal. So, the proposer

propose certain jobs certain projects. And if certain funding agencies or funder, they find

that particular proposal interesting, they may fund for the proposal in a collective way.

So, that is a kind of crowd funding platform like a kick started with example, we have

looked sometime back.

So, let us look into that how we can represent the crowd funding application, in the form

of a state machine. So, here the system has a initiation state, where some users they have

submitted certain proposal. Now, that proposal wants this someone like this proposal

they may transfer the money. So, here say Bob has transferred the committed money to

the system. So, you are reaching to a state that Bob has donated the money. Similarly if

Alice has transfer the committed money, you are reaching a state that Alice has donated

the money.

Now, after Bob has donated the money Alice may donated the money after that, or it may

happen that Alice has first donated the money and, after that Bob has donated the money.

Now, when both of them has donated the money either in the order of Bob Alice, or Alice

Bob, you have the money available in the system. Now, once you have the money

available in the system, you can initiate the job and say there are 2 jobs that need to be

executed, but there is no specific sequence in which the jobs need to be get executed.

So, it may happen that the job 1 is first complete and, then the job 2 is complete. So, then

you follow this path to make both job 1 and job 2 complete, or it may happen that the job

2 is first get finished. After that job 1 is get finished. So, in this particular order you may

again have this job 1 and job 2 get complete. So, once both the job done, then your smart

contract will transfer the money from the funders, which are here the Bob and Alice to

the project proposal say, if you has transferred that project proposal the money will be

transferred to if.

So, that way you can represent a smart contract in the form of a state machine in that,

any algorithm you can represent it in the form of a finite state machine.

(Refer Slide Time: 06:07)

Now in a typical distributed architecture the distributed state machine replication

mechanism works in this way. So, you have multiple servers, which works in a

distributed fashion. So, the advantage of using distributed severs in place of a centralized

server that we discussed earlier. So, the idea is that first you have multiple servers here.

So, you place the copies of the state machine on each of this server. So, each of this

server has a copy of this entire state machine, then severs get the client request.

(Refer Slide Time: 06:42)

So, here it is like that Bob is submitting his request and, Alice is submitting her request

and the request goes to different servers. Now, when the request are going to the different

servers. So, if you execute the state independently at its server the sate that will be there

in this server and the state, that will be there in this server they may be different. So, here

you will reach to a state that Bob has transfer the money here you have reach the state

that Alice has transfer the money.

But, collectively you have to ensure that all the 3 servers which is to a state after certain

time that both Bob and Alice has transfer their share of the money. So, to achieve this the

state machine replication mechanism works in this principle that you propagate this

inputs to all the servers.

(Refer Slide Time: 07:34)

So, all the servers has the input like that Bob has transferred the money and Alice has

transfer the money.

(Refer Slide Time: 07:44)

Then you order the inputs based on certain ordering algorithm, you can have a associated

timestamp with every individual transaction say, whenever Bob is making his transaction

it is associated with the timestamp and, when Alice is transferring her share of money,

that particular transaction is associated with another timestamp.

So, based on the timestamp you can have an ordering of the transactions and, then once

this ordering is done, then every individual system they execute the inputs based on the

orders which have been decided.

And they execute it individually at each server. Now, once this information is executed in

each server in that particular ordering algorithm, then you know that well first the

transaction corresponds to Bob that will get executed, then the transaction corresponds to

Alice that will get executed and all the servers reaching to the same state that both Bob

and Alice has transfer their share of money.

(Refer Slide Time: 08:49)

So, once this transaction is done, then see seeing the state machines across all the servers

to avoid any failure, it may happened that this server during the say this server during the

execution during the execution it has failed and after sometime it recovers.

So, once it recovers it should get this updated speed, that will both Bob and Alice has

transfer their share of the money. So, that update is done through synchronization of the

state machine. Now, here in this entire algorithm.

(Refer Slide Time: 09:22)

We have we have certain outputs that can be produced like, it may happen that well the

output is when both the share of the money has been transferred, you send a output or

you notified the client that well the job is now ready to get executed. So, that particular

output is send from the server to the individual users.

Now, in this entire procedure there are two glitch; the first one is that you need to

maintain order in service. And, second is that in the presence of a failure you need to

ensure that, all the individual severs are in the same page, everyone knows that well.

Both the transactions from Bob and Alice, they got excited and the entire money has

been transferred. Now, to ensure that you need to you need to have a kind of consensus

algorithm in the system.

Now, why do we apply this kind of state machine replication based consensus algorithm

in a permission model, in contrast to the challenge response based consensus model,

which we apply for the permission less settings. So, there is certain natural reasons to use

state machine based a consensus algorithms over permission blockchain.

(Refer Slide Time: 10:32)

So, the first reason is that the network is closed. So, when the network is closed every

individual nodes they know each other.

So, state the replication is possible among the node nodes. So, if you know that who are

your peers you can always replicate, your state machine with the current state to your

peers, the second thing is that this particular state machine replication based scenario, it

avoids overhead of mining. So, mining has a significant overhead in terms of the system

power that you are using, in terms of the time that you are providing. And a amount of

bitcoin that you are you may apply for this kind of a proof of state based mechanism. So,

or proof of elapsed time based mechanism.

So, it is like that either in case of a challenge response base method, either you have to

spent your physical assets, or you have to spend your digital assets. And it will take

certain time to solve that particular challenge. So, that has significant kind of overhead in

case of a permission less setting, but in case of a permission model because we know the

participant each other and, in case of a state machine replication you do not have this

kind of overhead, where you have to spend, your physical asset or some kind of virtual

assets rather, what you have to do that you have to imply certain kind of message passing

algorithm in the system. So, you can avoid the overhead of mining by applying this kind

of state machine replication based method.

But as I have mentioned that consensus is still required on top of this state machine

replication because the machines can be faulty or they can behave maliciously. So, let us

quickly go to the consensus algorithms. So, earlier you have looked into this concept of

distributed consensus.

(Refer Slide Time: 12:20)

So, in case of consensus algorithms well, if there is only single decision maker you do

not require any consensus, whenever there are multiple decision makers.

(Refer Slide Time: 12:35)

And in a collective way they want to come to certain decision, then you require the

consensus.

(Refer Slide Time: 12:43)

So, the distributed consensus it helps you to reach in a agreement distributed computing.

So, in case of in terms of the state machine replication concept you replicate the common

states. So, that all the processes they have the same view of the state, they can

understand. So, if I just draw simple state machine that so, this particular graph can give

you a simple state machine and, and say this is the final output state, this is the initial

state and there are say individual inputs and, from who are here the system reaches to the

state.

Now, it may happen that the system has reached to some intermediate state say the a

system has reached up to this state. If the system has reached up to this state, then you

need to ensure that all the processes all the users were, there in the system they have the

same due date get the same view that the system has reached to this particular rate state.

Now, there are multiple applications like, one typical application of this state machine

replication is the flight control system, when there are multiple flights and they want to

coordinate their positions among themselves, you can apply this kind of state machine

replication technique and distributed system to achieve consensus, then for fund

transferring system in a distributed environment like for the crypto currencies.

We are going to see that well in a closed environment, you can apply state machine

replication based algorithm for a consensus in a open environment, we have looked into

that well you can have a challenge response based consensus algorithm to achieve the

consensus.

Then for certain other distributed applications like a distributed leader election, were all

the nodes collectively need to elect one leader in the system for the kind of applications,

you have to ensure certain kind of consensus that all the nodes elects same leader, or the

same leader is elected at the end of the round for, this kind of agreement protocols were

the nodes collectively needs to come to certain agreement, we require this kind of a

distributed consensus algorithms.

(Refer Slide Time: 15:08)

Well we have looked into that we do not need a consensus in a single node process, but

when there are two nodes. So, in case of two nodes, if there is kind of fault if the network

is fault, or even if there is a kind of crash fault, even if the node behaves maliciously you

cannot reach consensus to reach consensus, you always require more than two nodes.

Now, this things you have look details earlier in the context of permission less

blockchain, that in a distributed environment you can have primarily three types of fault,

the first fault is the crash fault where a node crashes and is not able to send any message.

So, it may recovered after sometime and it may it may start sending the message again.

So, this call as a fail stop behavior, then you can have the network or the partition fault,

where because of a network fault that entire network gets partitioned. And the message

from one partition is not able to get propagated to another partition; the third type of fault

which is the difficult to handle in a distributed environment is a byzantine fault.

(Refer Slide Time: 16:18)

So, you have kind of malicious behaviors among the nodes, which may come due to

certain kind of hardware faults or software faults. So, this byzantine fault is that for

certain views, the node is behaving in one way whereas, for certain other views the node

is behaving in a different way.

(Refer Slide Time: 16:43)

So, to reach the consensus for three process. So, every process can have in one of the

three states, one is the undecided state in the undecided state the process, or the node has

proposed certain value from a set of feasible value is D. So, every node has propose

some value and they are in the undecided state, then in the communication state they are

exchanging. Exchanging the value among themselves. So, by exchanging the value and

then by applying the come consensus algorithms, they can reach to decided state, where

they set the decision that everyone in the network, they agrees under variable say D i

certain variable D i.

(Refer Slide Time: 17:27)

So, there are certain requirements of a consensus algorithm the details, you have looked

earlier. So, you need to ensure that eventually each process sets the decision variable. So,

it terminates after setting the decision variable, then the agreement property which says

that the decision value for all correct process that should be same, everyone should reach

to the common agreement. The third one is integrity that if the correct processes all

propose the same value, then any correct process in the decided state they has to send

that value.

So, if the every correct process propose one value x. So, at the decided state they should

decide on the same value x.

(Refer Slide Time: 18:14)

Then we have different kind of algorithms for ensuring consensus in a typical distributed

system, which we apply in permission blockchain and, these algorithms are based on this

state missions application principal. So, the initial algorithms for distributed consensus or

PAXOS and RAFT, which supports crash or network faults, but they cannot support

byzantine fault. So, to support byzantine fault we have algorithms like byzantine fault

tolerant algorithm, or practical byzantine fault tolerance PBFT algorithms.

So, this byzantine fault tolerance algorithm, they support byzantine faults in addition

with the crash or network fault. So, initially we look into the PAXOS RAFT in details

and then we will go to the byzantine fault tolerant algorithm.

(Refer Slide Time: 19:00)

So, let us go to the PAXOS. So, PAXOS has an interesting history, it was first dot com it

was the first consensus algorithm that was proposed by Leslie Lamport in 1989 and, the

objective of PAXOS over to choose a single value under crash or network fault. So, this

PAXOS although it was proposed by Lamport in 1918 89, but it took around the 13 years

to get the paper published and, there was a lot of discussion among the community about

the correctness of this particular algorithm.

So, that if you are so, and not very confident that the algorithm proposed by Lamport is

fair enough to ensure consensus in a distributed environment. And Lamport try to come

up with a formal proof of this particular consensus algorithm and, because of that

complicated proof people say that will it is very hard to understand the PAXOS

algorithm, or it is very hard to implement the PAXOS algorithm, but although the

inherent concept of PAXOS is kind of very simple.

So, we look into the PAXOS in a simplified view and, then will see that how PAXOS can

be implemented in a real system to ensure consensus. So, the idea behind PAXOS is

pretty simple it is like that, I am just giving you one example so, in IIT Kharagpur we

have broadly two options, were the student can go say after the class say, we have a

subway and we have a CCD. Now, after the class the students can collectively decide

that all of them want to go for either for the subway or for the CCD. Now, the question

comes that how will they select that whether, they want to go to CCD and go to subway.

And the interesting is that all of them want to go for together otherwise, the party would

not be that much good.

So, that is why the students want to make some decisions collectively that, they want to

go to either subway or CCD, but there is no central leader the only way to communicate

with that, they will just everyone will propose certain values and from that value

proposal, they will try to come to a consensus.

So, the idea is something like that say assume that I am a member of that particular team

of students. Now, I just wait for some amount of time and, I see that whether someone

else’s proposing a value to go for a CCD, or to go for a subway, if none of my friends are

proposing any value, then I initiate a proposal say I initiate a proposal say that let us go

for subway. So, now, I will see whether my friends are accepting that value or not.

So, that way the information get is propagate in the entire network and, they try to have

to some certain consensus based on a majority decision that well. If the majority of the

nodes proposes that, or either proposes, or agrees that us we want to go to subway, then

all of them goes to for subway otherwise, if majority of the students proposed to go for

CCD, then all of them go to CCD. So, that is the broad idea behind PAXOS.

(Refer Slide Time: 22:25)

So, let us look into that algorithmically how it works. So, you have certain proposers

who are proposing the values that proposed values should be chosen by the consensus

algorithm. So, here the proposers can propose a value that either to go for a subway or to

go for a CCD, then you have certain acceptors they form the consensus and accept the

values. So, the acceptors whenever they are hearing certain proposal from the proposer,

they either accepted or rejected.

Say it may happen that if I am willing to go for a subway, but some proposal is proposal

is coming to meet to go to CCD I will simply rejected. And some other friend of mine if

he or she is proposing to go for subway I will agree to that. So, that way will try to look

into that whether the majority of the node is either proposing or accepting, these going

for subway, or CCD to which one and accordingly.

This learner module will find out that which value has been chosen by each of these

acceptor and, then they will collectively accept that particular value. So, that is the broad

idea behind the PAXOS. So, there are this three type of nodes the proposer the acceptors

and the learner, everyone is a learner in the network which learns the, what is the

majority decision.

(Refer Slide Time: 23:50)

So, let us look into the process in a little detail. So, the proposer initially it prepare with a

proposal number. So, this proposal number need to be good enough. So, that your

proposal gets accepted.

So, the proposal propose make a prepared that proposal number and send it to the

acceptor. So, this proposal number it forms a timeline and the biggest number it is

considered up to date. So, it is like that one proposal is coming from P 1 with proposal

number say 100, another proposal is coming from say P 4, with proposal number, 102

then we will accept the proposal which is coming from P 4.

(Refer Slide Time: 23:40)

Then the acceptor makes it in this way the may algorithm that, I have mentioned that if

the proposal number is less than the acceptor is proposal number. So, if you if you

receive the lower proposal number if you are if you are if your current proposal number

is lower than the proposal number that you have, then you accept it otherwise you

decline it.

So, each acceptor is compare the received proposal number, with the current known

values for all the proposals prepare message. And if you are getting higher number, then

you accept it otherwise you decline it.

(Refer Slide Time: 25:28)

So, then the acceptor based on that it prepared the response, in the response the acceptor

can either acceptor, decline a message based on the proposal algorithm. So, as I have

mentioned that the biggest number are the acceptor that has it has seen till now, it put

that number in the response message and, it include the acceptance values that has been

accepted from the proposal. So, this accepted values is inform to the proposer.

(Refer Slide Time: 26:00)

Now, we take a port based on a majority decision. So, will see that will the proposal

looks that whether majority of the acceptors, they reject the proposal, if they have

rejected the proposal, then you updated with the latest proposal number, if they have not

rejected it, then you see that whether the majority of the acceptors are accepted the value,

if the majority of the acceptor has accepted value. Then you cannot choose that particular

proposal, if it is not then you send the accept message.

So, the idea is that whenever the majority of the acceptors, there they are sending some

accepted values, if they have accepted your value, then; that means, the value that you

have shared that is coming to be a consensus.

So, it is just like that you have proposed for a pees is your proposed for subway and,

once you have proposed for subway and majority of your friends are accepted for the

subway and from that what you can all of you can go for subway.

(Refer Slide Time: 27:23)

So, the final stage is this accept message. So, the proposer sends the accept message to

all the acceptors in the accept message, you include the proposal number. A similar to the

prepare phase that the proposal knows that my proposal has been accepted and, the value

is the single value that is proposed by the proposal.

(Refer Slide Time: 27:52)

Now, whenever the acceptor it accept values from the proposer, it informs the learner

about this majority voted value. So, everyone learns that what is the majority voting in

the environment.

(Refer Slide Time: 28:14)

Well if you have a single proposal in the system, then the system is very simple, a with

the single proposal every acceptor will accept the proposal because, that is going to be

the biggest and, so the proposal does not get it rejected if the acceptors are correct.

(Refer Slide Time: 28:36)

So, you have to ensure that if you need to ensure that majority of the acceptors are non-

faulty. Now, let us see that whenever certain acceptor fails. So, this acceptor can fail

during the prepare phase, if the acceptor fails during the prepare phase, then you do not

have any issue that here are other acceptors who can hear the proposal and, they can vote

either for the proposal or against the proposal.

(Refer Slide Time: 29:00)

Now, the acceptor may fail during the accept stage. Again if the acceptor fails during the

accept stage you do not have any issue, because other acceptors are their who have

already voted for the proposal. Now, the only thing that you have to ensure that list

number of N by 2 number of a acceptor, they can fail simultaneously because you are

going for the majority voting principle. So, whenever you are going for the majority

voting principle in a synchronous environment, you need to ensure that will majority of

the nodes are correct.

(Refer Slide Time: 29:43)

So, if more than N by 2 number of acceptor fail, then no proposer they get a reply and,

you cannot come to a consensus algorithm.

(Refer Slide Time: 30:00)

Now let us look into the scenario, when a proposer fails. Now, the proposal can again fail

during the prepare phase or during the say accept phase. So, if the proposal fails during

the prepare phase it is just like that no one is proposing for any value, none of your

friends are proposing for idea to go for a subway or to go for a CCD.

So, you wait wait wait for getting a value from your friend and, if you are not getting any

value. So, you become a proposal. So, the same idea is like that the acceptor wait for

certain times and, if they do not here for any proposal one of the acceptor, it becomes the

proposal and propose a new value.

(Refer Slide Time: 30:43)

Now, the proposal may fail during the accept phase, but if the proposal fails during the

accept phase the acceptor, they have already agreed upon whether choose or not to

choose the proposal based on the majority port. So, they have shared the majority port

among themselves and from, they can find out that whether the proposal has been

accepted or not.

(Refer Slide Time: 30:07)

Now, there can be an interesting attack here, which we call as the dwelling proposal say

do there are two proposals here, it is just like that the proposal one, it has send a it has

send certain proposal two all the acceptor and, then proposer two it sends the another

proposal with the higher proposal number.

Now, as soon that proposal one she is an attacker and, what she does that the moment the

he says that there is a proposal with a higher proposal number; she sends another

proposal based on more higher proposal numbers. So, it is like that whenever, she is here

that will proposer to have send a proposal with proposal number 2 0 1 she sends, another

proposal with 3 0 1.

So, that way by applying the by having there can be a kind of dwelling among the

individual proposal and, you may not be reached to a consensus. Now, to break that I

hear what we do that, we use the certain other certain other numbers are certain other

identities which will help me to break that well. So, it is just like that whenever you are

getting dwelling proposal, you block the proposer who are having lower height. So, you

you may break the eyes based on the idea of the proposal.

(Refer Slide Time: 32:20)

So, to do this that which particular proposer you are going to block, you need to execute

certain algorithm. So, you can have a leader election algorithm.

So, this leader election algorithm can select one of the proposer as a leader. Now, you

can see that, because PAXOS is a consensus algorithm PAXOS itself can be used as a

leader election algorithm. So, the few a PAXOS that I have mention due it is a kind of

very simplified view, the overall idea is that the proposer is proposing certain views to all

the acceptors and, acceptors they collectively look into that proposal.

And, if they agree with the proposal they send the accept message and by receiving they

that particular accept message, if the proposer finds out that he is the message has been

accepted then he sends back the accept to all other acceptors. And from they are to the

majority voting, they come to a census protocol.

Now, this simple view of the PAXOS easier to understand it is just like making one

selection, but if you look into the real system in a real system, you may go for a sequence

of selection sequence of choices rather than having a single choice. So, that kind of

system we call it as a multi PAXOS system. So, this multi PAXOS system it is something

like this you make a sequence of choices by applying repeated PAXOS protocol. Now,

applying repeated PAXOS is something complicated because, you have all these

messages need to be exchange among each other again and again.

And which increases the complexity of the PAXOS protocol. So, that is why all the

PAXOS gives a nice theoretical idea about why the system can reach to a consensus, or

how are distributed system can leads to a consensus, indeed this PAXOS protocol was

the first that has proved that will, you can have certain consensus algorithm in a

distributed environment.

So, by applied this kind the proposal and acceptors accepting certain values. So, you can

you can do certain level of optimizations on top of this repeated PAXOS, which is

basically done in case of multi PAXOS to come to our consensus. So, will not go to the

multipaxos in details rather we will go for a simplified more simplified consensus

algorithm, which is widely adopted as an alternate of PAXOS which we call. So, in the

next class we will look into the RAFT consensus mechanism in details are so.

Thank you all for attending we will look rafted details.

