
Blockchains Architecture, Design and Use Cases
Prof. Sandip Chakraborty

Department of Computer Science and Engineering
Indian Institute of Technology, Kharagpur

Lecture – 14
Permissioned Blockchain – I (Basics)

Welcome to the course on blockchain. So, in the last few lectures we have looked into

the details of a permission less block blockchain settings, where we have looked into the

architecture and system internals of a bitcoin based protocol. And we have went to the

details of how are bitcoins based system works and what are the different design

internals of a bitcoin based architecture where blockchain has been used as a

fundamental building block. So, the bitcoin type of blockchain network that we have

learnt till now it uses a model which we call as the permission less model.

So, in that permission less model setting ideally what happens that every node can join in

the network anytime without having any preauthentication or pre authorisation

mechanism. It is like that anyone can join in the network anytime without going to an

authentication procedure and that is why we had a settings in permission less blockchain

were you would require a consensus among the nodes.

But that kind of consensus we cannot use, the conventional distributed system protocols

and we went to our channel challenge response base method, where the network has

thrones certain challenge to the users or the nodes in the blockchain. And then the users

have collectively try to solve a problem and the node with wings to find out the solution

for the challenge that particular node ensures or advertise the updated blockchain to it is

neighbor.

In contrast to the permission less setting where it is more like an open environment we

have another kind of initiative from the industries specifically which we call as the

blockchain to and in that particular settings the industry was more focused towards the

blockchain application or towards the application of public ledgers, where you have

certain number of the nodes which is a kind of closed environment.

So, the nodes which knows each other and deep tries to come to a common platform

where there is no such centralized database or data server rather you still want a

complete decentralized architecture, but the difference is that now rather than having a

complete open environment you have a closed environment.

So, you have a set of nodes which knows each other a priory, but they may not trust each

other. So, that particular settings we call it as a permission the environment in contrast to

a permission less environment where nodes cannot join to the blockchain network

anytime rather before joining to the blockchain network they have to go through some

authentication or preauthorization mechanism through which they can validate

themselves.

So, in this particular lecture series so, in the next couple of hours we will look into the

details of this permission blockchain environment and the different aspects inside.

(Refer Slide Time: 03:42)

So, as we have mentioned that of permission model is something where the blockchain

architecture inside the blockchain architecture the users are authenticated a priory. In that

particular settings that uses know each other, but they may not trust each other it may

happened that certain nodes in the network in the blockchain network although they got a

pre authenticated they are authenticated to use the system.

But they have started behaving maliciously typical use case you can think about certain

business environment where you want to go for a business with a set of different levels

of users.

Now, in a in a think of think of a scenario of a typical organization or a typical company

in industry where in the company every user is authenticated every user knows each

other or at least there is certain database where you have the records of the users who

belongs to that particular company, but that does not prevent the users to behave

maliciously.

So, the users can behave maliciously anytime they can make some kind of cheating or

fraud with the with the entire system and under that particular scenario we have an

architecture where the users are pre authenticated the user knows each other, but they

may not trust each other because some users can behave maliciously.

So, here our objective is to run the blockchain among this known and identified set of

participants.

(Refer Slide Time: 05:24)

So, let us look into certain use cases of this permission environment to an interesting use

case of permission environment is for business application where you want to execute

certain contracts among a closed set of participant.

So, earlier we have look into the details of this concept of smart contracts where rather

than having the contracts on paper you write down the contacts in the form of a code and

that code will be uploaded to a blockchain environment where the code will get executed

that is a that is the typical scenario of a permission blockchain environment.

So, one interesting use case of this can be like this provenance tracking of asset so, in

this provenance tracking of assets. So, what you want to do you want to ensure that

whenever certain as it is moving from say one particular suppliers to the distributors to a

vendor and going to the market every stage there is certain locks which are being

maintained and inside that lock you make an entry that this particular asset has now

move from location A to location B.

Now, the interesting fact is that why do not you want to use a centralized server to have

this entire lock of data and then anyone can just look into that central lock and can verify

indeed. Now a days we use that kind of architecture say for example, whenever you are

sending certain courier service via say blue dart b h p or any kind of courier platform

what you normally do that whenever the you are you are later or your courier is moving

from one particular location to another particular location.

The courier agency they are making an entry to their central database that will this

particular location say the location A the centre at location a has received as the parcel

and they have verified the parcel and then they have verified the parcel send a parcel to

say location B the courier agent at location B. Now, whenever it is moving from one

agent to another agent that different location across the entire pass from the source to

destination every individual agent this making and entry to central database.

Now everyone else in that blue dart or b h p they can look into that lock and they can

find out that where that particular asset is moving, for how that asset is moving from the

user one user to the destination to the final discipline. Now in the centre architecture the

users are also in the loop. So, whenever you want you can make a login to their blue dart

blue dart website or you can provide a reference number or what they call as the waybill

number and. So, that waybill number you can track that where your parcel it is currently

located that and what is the expected time that it will reach at the destination.

Now, within this kind of centralized architecture whenever the entire thing is under

control blue dart it is good to use a centralized server because the centralized server is

maintained by blue dart, but think of a typical scenario when the particular thing is

moving from one say courier company to another courier company and third courier

company. So, a typical use case can be like you are sending a postal mail from say India

to somewhere in USA. So, whenever you are sending a postal mail to India to

somewhere in the USA.

So, the India post they are one authenticated domain and India post will basically do the

transfer of the post up to their border gateway or the border point from there they will

send it to some international agency or some international courier transfer postal transfer

who will then take the mail or take the courier to your USA post and then USA post will

do it transfer it internally.

Now, in this entire process you have multiple authorities who take cares of your parcel,

but whenever you have this kind of multiple authorities it is difficult, but there is a kind

of trust issues whenever you are going to rely on a centralized server so, the question that

comes first of all who will host that server.

If you want that will India post the will host the server then the question comes that why

USA post will trans or believe the data which is there in the India server and also the

USA a postal they have to have an access to the central database which is being

maintained by the India post. So, because they have different kind of policies or different

kind of environment it becomes difficult to handle this kind of multi authoritative

scenario when you have multiple authoritative domains and they try to put the

information to a central data base.

Now the second problem comes like if none of the India post or USA post will host that

particular database central database rather they may purchase the database from some

third party agent like they may think of that well we will now host this things to central

database the which will be hosted by a third party cloud. Now, if they host it on a third

party cloud then the questions comes like you have to pay a significant amount of money

for that third party cloud.

The second thing is that because they are multiple parties multiple authoritative domains

they require certain kind of access to that central server and the question comes that how

will you guarantee that the date of which is entered by the USA agent or entered by the

USA post that is not getting tampered by the data which is a being entered by India post

or vice versa.

So, whenever there is this kind of multiple authoritative dominos in the loop you all are

you have this kind of problems in trust relationship and that is why are people do not

want to go for any kind of centralized server. Now it is if you want to send something

from India post to USA post or vice versa what you have to do like whenever the get or

whenever your parcel is within India you can login or you can look into the India post

website to look into the tracking details and then whenever it is going to USA post we

have to looking to the US post website to go to looking were go to the details of the

tracking.

Now the information that is shared by India post to USA post or vice versa that will only

give you some insight or a kind of partial information like how your asset or your post is

moving your parcel is moving from India to USA or coming to India from USA. Now for

this kind of provenance tracking of assets, we are interested to use the blockchain

environment and the beauty of the blockchain environment is that you do not require any

kind of centralize server to be hosted the data need not to be in a centralized server the

data would be in the individual hand of India post and USA post, but everyone will be

able to validate adders data.

So, that is the typical use case of permission blockchain environment where you know

that well the use cases are going to be the India post or going to be the USA post. So, you

have a closed set up participants who are participating in the entire blockchain

environment, but it is like that there is still the trust relationship is not there and. So, you

have to maintain a certain kind of security or you have to ensure that the data is not

getting tampered while transferring from one authoritative domain to another

authoritative domain. .

So, the similar case happens whenever you are transferring certain kind of goods

between the suppliers and distributors. So, you have multiple suppliers multiple

distributors and multiple vendors. Now, it is like that every individual supplier distributor

or vendor their individual authoritative domain they have their own policy of entering

data, but a third party auditor should have access to this entire data and they should be

able to reliably verify that whatever data is being passed through supplier distributor

vendor and the final market those data are indeed the correct data.

To ensure this kind of environment in a distributed setting we want a permission model

or you want to use the permission model. Now well one point here is like you can always

use a permission less model for this kind of settings, but there are certain disadvantages

of using a permission less model because you are going for a open environment and be

whenever you are going for a open environment your network or your system becomes

more complex.

And you have to handle a lot of things all together and that is why we want to move from

a permission less model to a permission model. So, we will look into the certain aspects

of a permission model indeed it is well in respect to this permission model earlier we

have briefly looked into the concept of smart contracts here.

(Refer Slide Time: 15:26)

Let us go to the little details of this concept of smart contract. So, as we have discussed

earlier that as smart contract is a self executing contract, in which the terms of agreement

between the buyer and seller is directly written into the lines of code. So, it is like that

you are not using a pen and paper to write down the contract rather the entire contract is

written inside the code. So, the question comes that how this kind of contract may get

executed or how a blockchain can help you to execute this type of contracts.

So, if you remember the concept of bitcoin script that we discussed earlier. So, bitcoin

script is certain thing or certain small code through which you can change the control on

how the money that is you are transferring to your friend that will be spent latter on. So,

by writing into the bitcoin script by writing the rules into the bitcoin script if you

remember we had this input script and output script and our task could be to map the

output of the previous transaction to the input of the next transaction which will give you

an idea or which will give you an verifiable way of finding out that how the bitcoin that

you are transferring to your friend or how the bitcoin that you are transferring to your

claim that is going to be used latter on.

So, you can write a script where your friend can use that money immediately or at the

same time we have seen that you can write a script inside bitcoin where you can prevent

your friend to use that money for 2 months it is just like that 1 or 2 month, month type

line duration gets over your friend will be able to use that particular bitcoin for further

transactions. Now in case of smart contract we actually expand the idea further where it

is not like that some small simple scripts which are being used by bitcoin rather with

detailed that is scripts through some programming language or some general purpose

programming language.

So, can you can execute complex type of contracts like if certain conditions are met then

only this particular bitcoin will be spendable. So, if your friend meets certain condition

or if some environmental condition that can comes from the other third parties they gets

validated or they made, during only during that time the contract will get executed and it

will be used further or the money can be used further after all these conditions get

verified it. So, the concept of smart contract comes from this fact like you can extend

those simple script which is used in bitcoin to ensure the execution of smart contract one

typical.

(Refer Slide Time: 18:20)

Example is that you execute a transaction when certain condition is satisfied. So, you

have a seller you have a buyer and you have certain assets and the contract mix the

match with the buyer and seller now whenever you are buy something there are certain

scripts that will be executed at the seller side and there will be certain scripts that will be

executed at the buyer side. So, whenever someone is selling something they have a

contract like if I get this much amount of money then I can transfer the asset from myself

to you and the buyer the idea is that the moment I have transferred this much of money

the asset should be in my hand within certain duration.

So, you can write a contract to ensure this kind of this kind of environment. So, it is like

that the moment the buyer transfers the money to the seller. So, the moment of buyer

transfer the money to the seller the ownership of the asset goes from the seller to the

buyer and the code that you have written that particular code, actually validate whether

the buyer has transferred at certain amount of money in general you can think of in terms

of bitcoin or any kind of digital currency. It is like that the buyer the moment the buyer

has send that certain amount of currency to the seller and the contract actually verifies

that well this amount of money has been transferred from the buyer to the seller and then

it sends of sends the ownership of that particular asset from the seller to the buyer.

So, the seller will not be able to claim the ownership on that asset any further whereas,

the buyer will be able to claim his or her ownership on that particular asset. So, that is

the concept of smart contract which we can execute in closed environment with the help

of blockchain. So, here the fact is that in a typical business platform you have fixed

number of sellers or fixed number of buyers or you can say that there are limited

numbers of buyers and sellers in the market and the buyers and sellers can always

register to a central portal so, that everyone can know each other.

So, we are making an insurance that everyone knows each other the buyer knows seller

and the seller knows buyers, but there may not be any trust relationship between them it

happened that some seller is fraud and that seller it is just taking the money and give not

giving the asset to you. So, that kind of fraud that, kind of malicious activities in the

system we want to prevent with the help of a permission blockchain.

(Refer Slide Time: 21:26)

So, when let us look into many of the design limitations which are there in a permission

environment. So, if you look into the blockchain concept which actually cames from this

typical permission less environment like a bitcoin type of examples they are one issue is

that we execute the transaction sequentially based on the consensus. So, it is like that if

certain transaction if it gets verified or if it gets committed in one transaction that will

first executed and the transaction that is committed latter on that will be executed next.

So, the request to the applications, the applications here of the smart contracts they are

ordered by the order of the consensus in which the individual application of the

individual contacts get a consensus and they are executed in that particular order.

So, these kind of sequential order actually gives about on the effective throughput

because you want to ensure that certain consensus or certain ordering of transactions are

made we apply that proof of work base techniques in case of your permission less model

were the network or the system close the challenge to that users individual users. And

every user tries to solve that particular challenge individually and the nature of the

challenge is such that it is difficult to find out a solution for that challenge, but once a

solution is found everyone can verify it very easily. .

So, with that particular challenge response based method than nodes try to come to the

consensus, but as we have seen like the challenge is very hard at the challenge is taking

certain time to get a solution and that is the reason that if you want to this kind of

serializable order of transactions execution you get a bound on the effective throughput.

So, ideal in the throughput is inversely proportional to the commitment latency. So, it is

like that if your commitment latency gets increased your throughput will get then

decreased.

So, it is like that in a permission less, environment in a bitcoin type of environment if

you increase the difficulty of your challenge if or if you increase the complexity of your

challenge the effective throughput that you will get that throughput here in terms of

number of transactions that can be committed per second per unit time. So, the effective

throughput that you will get it will drop in inversely proportional to the commitment

latency.

So, this can be a possible attack on the smart contract platform. So, you introduced

contract an attacker can introduce contract which will take long time to execute and that

is why if certain contract takes the huge time to execute the other contacts will not be

able to execute in further, because once the consensus for the previous contract has been

reached then only you will be able to execute the contracts which are been submitted

latter on.

So, you maintain a kind of serializability order of the transactions which is here

preventing you to execute latter contract until the previous contract gets executed. If you

introduce a malicious contract in the system which will take a huge amount for

execution, you will be able to kind of launch a kind of denial of service attack on your

consensus algorithm.

(Refer Slide Time: 25:03)

So, that is the kind of first problem, the second problem is like the implementation of

your smart contract. Now, as I have mentioned to implement a smart contract you need to

go to some language which will give you more power compared to bitcoin script. So, if

you remember that bitcoin script is a not during complete language and because it is not

during complete it does not support all the contracts which can be there.

For example, if does not support loops or it has certain limitations in execution, but to

implement a smart contract, because you want to increase the power of that particular

script so, that you can write down any general purpose contract in the form of a code. We

use different kind of language for that so, the develops are develop, different types of

languages. So, one interesting language is that golang which is widely used in this kind

of a contract execution platform.

So, this is the typical example of a contract execution platform in case of this golang you

have a construct call the map. So, map is a data structure where you have certain keys

and you have certain values. So, every value is associated with one key, now if you run a

loop. So, here I have defined the map with the string values the key under corresponding

value and this map is stored in a map variable n in golang language and then we are just

writing a for loop on top of the smart. So, whenever you have written a for loop over a

map and just printing the key value pair and if you run this code multiple times and you

have multiple key value pairs in your map you will see that are different run the ordering

of that key value pairs are different.

Now, this gives a non deterministic execution of certain programming construct which

are there in your general purpose programming languages. So, here in the golang in the

map data structure that it is design in certain way. So, that it is not necessary like every

key is ordered in certain way. So, it uses it is internal contracts to fetch that keep certain

key under corresponding value which is associated with that key. So, that is why

different runs you may have different ordering of the keys.

So, the smart contract execution in contrary it should always needs to be deterministic

otherwise it may happen that the system may lead to certain inconsistent state or you

may have many forces in the system. So, one particular user it executes the contract get

one result or one ordering of result another complex it may get another ordering of result.

So, if you are getting two different ordering of results then it may be difficult for you to

ensure that that you have the longest chain in the blockchain, although it by the use of

the blockchain technology you may be able to ensure that, but you will have multiple

unnecessary fork in the system which you want to prevent.

So, the solution here is to go for a specific domain specific language it will implement

you are smart contract platform. So, for example, ethereum is a platform where you can

implement smart contract with the construct that we have supporting.

(Refer Slide Time: 28:37)

Now, that third design limitation is the execution of smart contracts. So, generally we

execute does not contract at all node and propagate the state to other. So, that we try to

reach in a consensus. So, here the consensus is mean that you execute does contract and

based on the input you get certain states and ensure that the states which have been

propagated to all the nodes in your blockchain environment they get the same states.

But to ensure consensus the problem that comes that do you have sufficient number of

trusted nodes to validate the execution of smart contact, if it happens that will your

number of trusted nodes are less than the number of malicious nodes they may get

control over the entire environment. But you can prevent that by going to a permission

less setting like a proof of work base consensus mechanism, but in a proof of work base

consensus mechanism the problem is like you will be you may be able to stuck to a

particular like block or a kind of starvation scenario where a contract is taking long time

to execute and all the contacts are getting backlock.

So, that is why in case of this permission setting you want to move from that challenge

response based method to the traditional distributed system based consensus algorithms,

but in that case you have to ensure that you have sufficient number of trusted nodes in

the system.

(Refer Slide Time: 30:15)

So, one interesting question that comes regarding the consensus of permission

blockchain model that do you always need do you really need to execute the contacts are

each node indeed it is not necessary you just need state synchronization across all the

nodes. So, it is like that you execute the contract in one node then after executing the

contract in one node.

(Refer Slide Time: 30:42)

You propagate the state of the contract to your neighbouring node and that is states get

further propagated. So, that way every nodes in the system it get the same states of the

contract and they can be on the same page of your smart contract.

(Refer Slide Time: 31:00)

But a typical question comes that what is the node that execute the contract it becomes

faulty. So, what if this particular nodes become faulty now if this nodes becomes faulty

vendor system gets down and the systems will not be able to make any progress further.

(Refer Slide Time: 31:15)

So, in this particular scenario the idea is that you used the concept of state machine

application. So, you execute the contract at a subset of node rather than a single node.

So, you have multiple nodes which can be selected to run the particular contracts. So,

here this 3 nodes are executing the contract and result of the 3 nodes are propagate to all

the nodes in the network.

So, that way you can ensure a kind of should through this state machine replication you

can ensure that that every node who are they are the part of the smart contract they are on

the same page and they knows that will have to this much of the contract that got

executed under remaining part need to be executed.

So, today will stop at this point in the next class will look into this the concept of state

machine replication which is a powerful tool to ensure consensus in a permission

blockchain environment; so, will come back next, in the next lecture with this concept of

state machine replication.

Thank you.

