
Blockchains Architecture, Design and Use Cases
Prof. Sandip Chakraborty

Department of Computer Science and Engineering
Indian Institute of Technology, Kharagpur

Lecture – 11
Consensus in Bitcoin – I (The Basics)

Welcome back to the course on Blockchain.

(Refer Slide Time: 00:22)

So, in the last discussion we have looked into the consensus mechanism in blockchain,

consensus are the general distributed consensus architecture. So, in this particular talk

will look into that how consensus is achieved in bitcoin based permission less blockchain

environment.

(Refer Slide Time: 00:40)

So, here is the consensus algorithm in bitcoin. So, the objective of the consensus

algorithm is in bitcoin is to add a new block to the existing blockchain.

Now, there can be multiple minors in the bitcoin network and individual minors can

propose their new blocks based on the transaction that they have part off. So, one minor

can had the transactions 15, 16, 18 and 19, whereas another minor can had the

transactions 15, 16 and 17.

So, it is interesting to note as I have also mentioned in the last lecture that it is not

necessary that every minor will propose a new block or better to say every minor will

propose a same block. So, it is it is all right that whatever transactions the minor has hard

of till now, or better to say that the time that the last block has been added in the

blockchain they can include all those transactions in the new block provided that the total

size of the block does not exists certain threshold.

So, in this particular example will have 3 minor. So, this individual 3 minors have the 3

individual blocks which have been proposed by them and objective here is to decide that

which particular block need to be added to the existing blockchain. So, the consensus

objective is that which block do, we add next out of the 3 blocks proposed by the minor.

Now, the challenge here is that the minor do not know each other, because it is a open

network, it is a permission less network. So, anyone can participate in the network as a

minor and they can collect the transactions coming from the clients and they can propose

a new block. So, under this certain scenarios how will you ensure that the minors will

come to our consensus?

(Refer Slide Time: 02:44)

So, let us look into one possible solution which is more closer to the traditional

distributed consensus algorithms, where every minor whenever they are proposing some

new blocks they will broadcast the information in the network and after broadcasting the

information to the network they will wait for a certain amount of time and see that

whether they are disturbing any other blocks from other minors and based on that they

will apply a choice function to select one of the blocks, but there is a problem in this

particular mechanisms. So, what is the problem? The problem here is that whenever we

are saying that a minor will wait for certain duration that is technically infeasible under

this particular environment.

Why? Because first of all the miners do not know each other because the minors do not

know they do not know that how many other minors are there in the network who are

going to propose new blocks. And the second to one is that the internet is inherently

asynchronous, asynchronous in the same slide whenever a minor will propose a block the

there can be arbitrary delay in transmitting those new blocks.

(Refer Slide Time: 04:01)

So, we in this particular environment having a consensus based on a broadcasting

algorithm by applying traditional distributed system mechanism may not be feasible. So,

if you remember the impossibility theorem where we have mentioned that coming to a

consensus is impossible in the in a purely asynchronous distributed network in the

presence of even a single failure.

So, in this particular architecture even if there is an minor which is an malicious minor,

even in the presence of a single malicious minor other minors may not be able to collect

all the blocks which are coming from the legitimate minors and having a consensus by

applying this kind of traditional distributed algorithm based on broadcasting or based on

message passing is infeasible in this scenario.

(Refer Slide Time: 04:57)

So, let us see that what we can do. So, we have two different observations here. The first

observation is interesting that in case of a blockchain environment any valid block can be

accepted. So, a valid block means a block with all valid transaction. So, we can accept

any of the proposed block if it is valid. And even if the block is proposed by a only single

one minor. So, it is not necessary that the block need to be proposed by multiple minor

together even if it is coming from a single minor and it is a valid block we can accept

that block and we can connect that block to the existing blockchain.

(Refer Slide Time: 05:38)

So, that was our first observation. And our second observation is start the inter protocol

can run in rounds run in rounds in means like once a valid block has been accepted or

stay the system has reached to the consensus from that point round starts the minor starts

getting the transactions, and then they can find out that which are the transactions which

are not already committed in the blockchain and based on that they can propose the new

block.

So, if you look into this particular example in this example the last block in the

blockchain it has transaction 11, 12, 13 and 14. So, all the minors wants this particular

block has been committed in the blockchain the minors they can find out that well

transaction 11, 12, 13 and 14 has already been committed. So, we do not need to include

those transactions again in a new block. So, they can propose a new block by excluding

the transactions which has already committed in the blockchain. So, that way once the

commitment has been done that means, the block is added to a particular blockchain the

minors can try to figure out which are the next transactions that need to be added to the

blockchain and they can proposed the new block based on that.

(Refer Slide Time: 06:56)

So, based on these two observations we can design a solution in this way where every

minor they independently tries to solve a challenge. So, the challenge is provided by the

network. So, they will independently try to solve a challenge and the block is accepted

for the minor who can proof fast that the challenge has been solved.

So, this particular q r proof fast is important here because this q r says that every

individual minors they are trying to solve a solution imposed by the network and the

minor who is able to solve the problem first they at the solution of the problem to the

existing block and add that block to the blockchain.

(Refer Slide Time: 07:44)

So, this particular algorithm is known as proof of work that proof comes from the fact

that the minor he has been able to the minor who is proposing the solution he was able to

proof that he has found out a solution of the problem. So, that is the solution architecture

that when the minor finds out that there is a solution he proposed the block to the other

minor saying that well I have already received the solution. So, he has already received

the solution and other minor they stop finding out the solution for the challenge and start

finding new blocks in the from the transactions that which are coming from the clients.

Now, one interesting point to note that this particular communication can work

asynchronously. So, whenever you are advertising the solution to the other minors in the

network, the minors can work for mining the previous block during that time say I am a

minor I am trying to find out the solution for a given challenge and whenever I will find

out that well a new block has been added in the blockchain.

During that time if I find out that well that particular block has certain set of transactions

which are also part of my block. So, there is over lapping of transactions between the

block that I am trying to proof or I am trying to mine and the newly added block in the

blockchain. If that is the scenario then I can just stop the mining at that point accept the

most updated blockchain and then start finding out a blocks with new transactions which

are coming from the clients.

So, once the solution has been obtained. So, the block has been added to the existing

blockchain. So, this block with transaction 15, 16, 18 and 19 has been added to the

blockchain.

(Refer Slide Time: 09:42)

Now, the interesting fact that whenever this particular information this updated

blockchain is propagated to all the minors in the network. So, all the minors can see. So,

the other minors they were at that time they were also trying to mine the blocks where

this transactions 18 and 19 were there. So, if you look into the earlier slide. So, this

minor was also trying to mine a block where transaction 15, 16, 17 was they are the

second minor was trying to mine a block where transaction 15, 16, 17, 18 was there.

Now, this new block has been added to the blockchain and they can find out that well in

the newly added block transactions this 18 and 19; 15, 16, 18 and 19 they are there, but

transaction 17 has not been included in the block. Now, in the next round every minor

can include transaction 17 and at the same time along with transaction 17 the other

transactions that they have hard within that time duration. So, those transactions can be

added and they can start mining those specific blocks. So, the same process repeats in

rounds and they can try to find out that what can be the solution for that particular

challenge.

So, what would be the challenge? So, to generate the challenge bitcoin relies on a

mechanism called proof of work.

(Refer Slide Time: 11:07)

So, what is the proof of work? The proof of work is an economic measure to deter

service abuses by requiring some work from the service requester. Usually it is

processing time of a computer, say if you are requesting for a service you have to show

to the service provider that you have spent significant interest on the service that you are

requesting for.

So, I will give you an example that how this kind of proof of work based system can help

you to prevent junk emails or spam emails that is an interesting idea, but the broad idea

of this proof of work is that every service requester must spent some time on the service

that he or she is asking for before actually requesting for the service. So, that way it

shows you from the economic perspective that the service requester has some interest on

the service. So, if the services provided to that service requester that service requester

will genuinely accept that service and it will not use it maliciously.

So, this idea is actually an old idea, which came from Dwork and Naor in 1992 from an

interesting paper published in Crypto Conference to combat the junk emails. So, in that

particular paper the idea that they had shared that, you have to do some work to send a

valid email. Now, the attacker this way they will be discouraged to send junk email

because in that case they have to do the same work of the same complexity over the junk

emails that will not proof beneficial for them.

(Refer Slide Time: 12:54)

So, this kind of proof of work base system they should have a certain features one

important feature is the asymmetry, that means, the work must be moderately hard, but

feasible.

So, you should try to solve a moderately hard, but feasible work to the service requester

side whereas at the service provider side the work must be easy to check or must be easy

to validate. So, that way the service requesters they will get discourage to forge the work.

So, because they have to spend some significant amount of time to complete that

particular work they will be discouraged to submit any kind of spam or junk work to the

system, but service providers on the other hand they can easily check the validity of the

work because of the asymmetry nature that the work is easier to validate for the service

provider, but it is hard, but not infeasible for the service requester.

(Refer Slide Time: 13:55)

So, let us look into that how cryptographic has can work as a good indicator for proof of

work. So, while discussing about different type of cryptographic hash functions. We have

looked into the puzzle friendliness property of cryptographic hash functions. So, the

puzzle friendliness property says that even X and Y, you need to find out k such that Y is

equal to hash of X and k appended with each other. So, if X and Y are known in that case

it is very difficult to find out the certain k you have to the best algorithm to find out this

kind of k is to apply a certain kind of route force mechanism or some kind of random

search a over the possible values.

So, this particular work it is difficult to find, but it is easier to validate. So, once you have

find out such k, it is easier to find out or it is easier to validate whether the hash value of

X appended k becomes equal to Y or not. Now, this concept was used in hashcash.

So, this hashcash work was proposed by a Adam back in 2002, which was a proof of

work mechanism that can be added with an email as a good will token. So, it is like that

the hashcash can be only generated or the legitimate email senders will be interested to

generate a hashcash whereas, the spam email generators they will be discouraged to

generate the hashcash. So, let us look into the details of this hashcash mechanism and

how it works.

(Refer Slide Time: 15:40)

Now, this hashcash proof of work is an textual encoding or a you can think of it as a

hashcash stamp which is included in an email header. So, this hashcash is a proof that the

sender has expanded a modest amount of CPU time to calculate the stamp before sending

that email.

Now, if the sender has spend a modest amount of time to generate the hashcash before

sending the email it is unlikely that the sender is a spammer because the spammer will be

interested to send repeated emails one after another by some auto generated script. So, if

they have to wait for certain amount of time for sending every emails that the spammer

will not be beneficial out of that. But on the other hand the email receiver they can verify

the hashcash spam very easily by applying certain hash function.

But any change in the header also requires a change in the hashcash because you are

generating the hashcash from the header. So, if you want to modify certain field inside

the email header you have to re-generate the hashcash which is for which the brute force

is the only way to find a new hashcash. So, that way attacker will also be discouraged to

tamper the email header.

(Refer Slide Time: 17:01)

So, here is an example of a hashcash. So, the hashcash which is included in a email

header it looks like that you have a hashcash failed after the hashcash failed, you have

certain individual field. So, the first field one it talks about the version number. So, we

are using hashcash version 1 the 20 is certain number of bits were we can say that it is

the number of 0 bits that need to be there in the hash code. So, this 20 says that you need

to generate hash function where the first 20 bits of the hash function would be 0.

So, that is the challenge which is post to the to the email sender. Now, the email sender

has to find out the hash value where the first 20 bits are 0. Then the time stamp value did

the here it was generated on first April 2018. So, it is that year month date format 18401,

then certain resource here I have put my Email ID.

Then a random number a string of random characters a string of random character is

included in the hashcash and what is the importance of the string of random character,

that will see later and then a counter value. So, this counter value is working like a nons.

So, the email sender for them this all the fields like, the version number of 0 bits, that is

timestamp the resource fields the string of random characters all these fields are fixed the

only field email sender can change is that counter field.

So, the email sender need to check with different counter value that we by providing

different counter value that for which counter value it can find out the expected hash

value where the objective is to have a 20 number of 0s at the prefix. So, in the senders

side the hashcash is constructed in this way so you first construct the header. So, the

construct the header you have individual fields after putting individual fields in the

header then the sender initialization counter value to a random number. So, once the

sender initialize the counter value to a random number then the sender compute in a

traditional hashcash we use 160 bit SHA-1 algorithm.

So, by applying 160 bit SHA-1 algorithm you try to find out a hash value where the first

20 beat of the hash is all 0s. If you can find out a hash value where the first 20 bit of the

hash is all 0 than then that particular hash is accepted, otherwise you try with a different

counter you change the counter value and check with a different counter value and find

out that whether the resultant has produces that required 20 bit at the beginning or not.

(Refer Slide Time: 19:56)

Now, at the recipient the side the recipient checks certain parameters the date the date

should be within two days as per the hashcash version 1. So, if someone is changing the

date if some email spam or some autocracies making a change in the date version he

need to again the compute hashcash, the email address it takes that while the email

address in the hashcash it exactly matches with the sender email address.

So; that means, that the sender has generated that particular hashcash value and the

random string. So, this random string should not be used repeatedly within a certain

duration. So, it prevents the replay attack. So, the replay attack is something like this

where the attacker has told the previous hashcash, attacker has cash the previous

hashcash and by cashing the previous hashcash with every junk email he or she is

sending that previous hashcash.

So, this random string is utilized to prevent those kind of reply after where every time

when you are sending an new email you have to change that random string. So, if you

change the random string you have to generate a new hashcash value and that way you

have to spend certain time to generate the corresponding hashcash.

Now, once you have checked all the fields next time is to validate the hashcash,

validating the hashcash is pretty easy used at the interesting find out the 160 bits SHA-1

hash function out of that string and if you can find out that will the first 20 bits are 0, all

0s; that means, that was your earlier objective that you can find out by looking at the

string that the first 20 bits should be 0. So, if the first 20 bits are all 0s then you accept

that particular email otherwise you discuss that address.

(Refer Slide Time: 21:48)

Well some analysis of hashcash proof of work. So, because you are utilizing 160 bits

SHA-1 hash function. So, you can have two to the power 160 possible hash values. Now,

what we want? That if you want 20 bits at the beginning; that means, you can have 2 to

the power 140 possible hash values which satisfy the criteria where the first 20 bits are

0s and remaining 140 bits can be either 0 or 1.

So, the chance of randomly selecting a header with a 20 leading 0 bits at the prefix that

probability is 1 out of 2 to the power of 20. So that means, if you can try with 2 to the

power 20 different hash function with high probability you can get a hash value. So, that

way the expected number of rehash the sender has to do is 2 to the power 20 which takes

certain amount of time in today’s computer it takes in the order of few seconds to

compute the hashcash, but on the other hand validating the hashcash at the receiver side

is very fast the receiver requires around two micro second to validate the hashcash, ok.

(Refer Slide Time: 23:05)

So, now, there is an interesting exercise for you. So, for these hashcash you can go to the

website hashcash dot org.

(Refer Slide Time: 23:17)

(Refer Slide Time: 23:18)

So, here is the hashcash dot o r g website. In the hashcash dot o r g website you can find

out the hashcash source in different languages.

(Refer Slide Time: 23:30)

So, under source directory library hashcash sources available in generic c, DLL, java,

python, even in perl, C hash, shell script in different languages it is available. So, I will

encourage you to download the source the source is very simple and you can just do a

direct execution of that. So, executing that particular script I will suggest you to whom

follow these exercises. First download with source and try with different number of 0 bit

target. So, you can increase the number of targeted 0 bits at the hash prefix say from 20

to some 2020 at a step of 100 and observe the time to compute the hashcash.

So, the output that you will see you will find out that as you increase the number of

leading 0 bits in the prefix the time will actually increase exponentially. So, if you

increase the challenge, if you increase the complexity of the challenge it will take more

time to find out the corresponding hashcash.

So, that way you can determine that at what difficulty you can put the challenge to the

email sender if you want that well other email function should have some 100 leading 0

bits. That means, you are actually trying to design a system which we where the sender

have to do a lot of work to find out that hashcash, but they will be they but you will be

able to guarantee strong security of that system and you will be able to prevent the junk

email significantly.

Then under recipient side you use this SHA-1 some script would which is a standard tool

available in most Linux computers to compute the SHA-1 checksum of the obtain

hashcash value from the above experiment. By doing that SHA-1 sum, SHA-1 sum will

return you the 160 bits SHA-1 checksum then you can look into the checksum field and

you can find out that well whatever number of bits you have asked for or whatever

number of bit 0 bits you have asked for in the prefix weather that many number of 0 bits

are there in the prefix or not. And also you can find out that how much time it is taking

for the recipient to validate the hash just by applying these SHA-1 some tool on the on

the obtained hashcash value.

So, this would be an interesting exercise for you. So, in the next lecture will discuss

about bitcoin proof of work which is based on this hashcash based system. So, in today’s

lecture will stop at this point. So, in the next lecture will see you and will look into the

bitcoin proof of work mechanism in further details which is based on the hashcash based

system. See you again.

Thank you.

