
Blockchains Architecture, Design and Use Cases
Prof. Sandip Chakraborty

Department of Computer Science and Engineering
Indian Institute of Technology, Kharagpur

Lecture – 10
Distributed Consensus

Welcome to all of you in the course of a Blockchain. So, till now we have discussed

about the permission model of blockchain. And we have looked into the details of a

bitcoin network as an example of permission blockchain. And, we have seen different

aspects of a bitcoin network where user can join in the network and start doing the

transaction.

(Refer Slide Time: 00:44)

So, in this particular class a we will discuss about a one interesting property of a

blockchain network or rather an set of algorithms, which help in achieving consensus in

a distributed or decentralized network. So, we look into the details different methods of

consensus and a how they are applicable for a general blockchain environment and with

a special case of bitcoin network.

(Refer Slide Time: 01:11)

So, this concept of consensus is an interesting topic in a decentralized or in a distributed

network. So, consensus means it is a procedure to reach in a common agreement in a

decentralized or in a distributed platform. So, here is an example a of a typical example

of a consensus mechanism you can assume, that in an army there are 4 generals and a

generals are taking some kind of decisions. And when the generals are taking the

decisions in a decentralized on a distributed way; that means, they have their own

policies to take the decision they can either make an attack or can reflect from the attack.

Now, in a consensus algorithm these generals individually they express their opinion

their individual opinion and from their individual opinion by applying some kind of

choice function, which can be the majority decision in this particular case.

So, by applying such kind of choice function the environment or the system finally,

decides what to do next. So, here in this particular example that 3 generals they are

making a choice towards attack. So, with the majority principle the system can come to a

consensus that a they should make a attack collectively.

Now, this kind of consensus algorithm it is important for a message passing environment

in a distributed system.

(Refer Slide Time: 02:38)

So, let us first look into that why do we require consensus. So, in a traditional or

conventional distributed system we apply consensuses to ensure reliability and fault

tolerance. So, by mean reliability and fault tolerance it is like that in a decentralized

environment when you have multiple individual parties and they can take their own

decision, then it may happened that some nodes are, some parties are, some individuals

are working as maliciously or they are working as a faulty individual.

So, in those particular cases it is important to come to a command decision or a

command view point. So, having a command view point in an environment where people

can behave maliciously or people can crash or work as a faulty way it is it is are difficult

thing. So, under this kind of distributed environment our objective is to ensure reliability;

that means, to ensure correct operations in the presence of faulty individuals.

So, there are multiple examples for a consensus in a distributed system if you think of a

distributed database, where the transactions are going on from multiple points of sales

say; from multiple ATM’s, multiple banking sectors the transactions are coming in

during that time consensuses as an important aspects say for example, you want to

transact some money from one branch to another bank branch another account in another

bank branch.

So, during that time you need to come to a consensus that all the bank branches need to

decide that well this transactions is a valid transactions and after deciding that this

transaction is a valid transaction they should commit the transaction, then another

example of consensus is state machine in replication. So, the state machine replication is

an important aspect of any distributed protocol.

So, say for example, if you want to run some kind of distributed protocol over a network.

Every individual nodes runs the current protocol current version of the protocol and this

stood the state of the protocol in different state machines. So, so the entire execution part

of the protocol can be represented as a state machine.

Now, these state machines need to be replicated into multiple nodes. So, that every

individual node can reach to a command point or command output of that protocol. So,

the state machine replication is an example of consensus, then another example of

consensus is clock synchronization or distributed clock synchronization. Say you have

multiple clocks in your network and every individual node tries to find out that, which is

the most updated clock or which is the most current clock.

So, they should make a consensus among themselves and come to a current a come to a

single clock and by applying this kind of clock synchronous asynchronous clock

architecture across the network they can do further operations.

So, these are the typical examples of consensus in a traditional distributed system

environment.

(Refer Slide Time: 05:51)

So, let us look into that while achieving consensus can be difficult in certain scenario or

typically in a message passing system. So, here the example that we have considered

earlier so, we are considering that example again that we have now multiple generals.

Now these generals are utilizing and message passing environment to communicate their

viewpoint to others.

Now, you can just think of that every individual generals they are making a tell telephone

call to other general and then communicating they are view point to others. Now, let us

look into this diagram. So, this general it is sending it is information to it is neighbouring

generals this one and this one. Now whenever general is sending the information the

general makes a telephone call to the other 2 general say G 1 and G 2, and a and inform

his view point that they should now attack. Similarly this general say the general G 3 he

again makes a phone call to G 2 and G 1 and send his decision that the soldiers should

now make an attack.

But, this particular general this general say G 1 this is a malicious general and this

general make a malicious call like a he makes a call to 1 general say G 4 and ask for

retreat. Whereas, whenever he is making a call to general G 3 he is saying as an attack.

Now in a complete distributed or a decentralized environment the generals may get

confuse say for example, whenever these general is informing G 1 is informing G 4 to

retreat G 4 can get are confused that whether or what he should do?.

So, that way in a in a decentralized or a distributed platform achieving consensus over a

message passing system can be difficult, when you have this kind of malicious node or

you have nodes, which starts working maliciously. So, we have a technical term for this

kind of nodes we called them as the a byzantine time nodes are we call this kind of

failure as byzantine time failures.

So, later on we will discuss about this kind of byzantine failures in details, but in brief

that in the presence of this kind of byzantine failures the system can behave maliciously

or it may be difficult to achieve a consensus in a distributed environment.

(Refer Slide Time: 08:23)

So but as we know that, if there is no failure in the system, then it may be easy and trivial

to reach in a consensus. So, in a genetic algorithm can be something like this like you

broadcast the personal choice to all, and then you apply your choice function say in this

case if your choice is the maximum of all the receive value, then you can you can

achieve consensus.

So, here are 4 nodes individual nodes make a choice of 10, 20, 30 or 40 and they

informed they are individual choices to all other nodes in the network, and whenever

every node receives all the choices from all the neighbours they can apply on max

function to find out that what is the maximum. So, you can easily see that everyone will

reach to the value 40, if they apply the maximum function of all the received values. So,

whenever we are saying that achieving consensus in this particular architecture is easy

and straight forward it is under certain scenarios.

So, this scenario search first of all the system need to be need to be a faultless there

should not be any failure in the system. So, that every individual node can receive the

message correctly and, but second requirement is that the system should behave in a

synchronous way. So, what is mean by synchronous way we will look into the formal

definition of a synchronous message passing system, but by definition synchronous

message passing system is something, where it is expected that you will receive all the

messages within some predefined time interval.

So, here in this particular architecture every individual node is expected to receive all the

messages from the peers in a non failure environment, within a predefined timeout and

every node can wait for that much of time and in a synchronous system, it is expected

that everyone will receive the message.

So, once they receives the message they can find out the maximum of all the received

values from different messages and take that as a value for the consensus.

(Refer Slide Time: 10:23)

However, a consensuses achieving consensuses can be non-trivial in case of a distributed

environment due to the presence of multiple type of failures. Now typically in a

distributed system we consider 3 different type of failures the first one is called as the

crash fault. So, a crash fault is something like a node suddenly crashes. So, the node

suddenly crashes or the nodes become unavailable in the middle of a communication. So,

you are not expected to receive any message from that particular node.

So, this is one type of typical fault that can be a kind of hardware fault or a software fault

due to which the node or the process, which is communicating with another one that

particular process, fails. The second type of fault is network fault or the partition fault a

network fault is something when a network link fails. So, a network failure may result in

a partition in the network. So, we can we can see an example of that.

(Refer Slide Time: 11:30)

So, say assume that there are multiple nodes in the network and this nodes are

interconnected to it each other.

So, we have multiple nodes in the network and these individual nodes are interconnected

now. So, we have few other nodes they are inter connected with each other. Now in this

particular node if this node fails then the, if this link fails then the entire network get

partitioned into 2 different parts. So, we have one partition here and we have a second

partition here. So, the entire network get partition and you are not expected to receive

any message from any node of this partition to any node of this partition or the vice

versa.

So, this message communication will not happen, because you had you had a bottleneck

link and that particular bottleneck link has failed. So, under this kind of network failure,

because this kind of partition can happen in the network we say that it is a type of a

partition fault, we used the term partition fault to denote this kind of network failure. So,

this can kind of network failure can hamper reaching in the consensus. So, if a network

failure makes a partition of the network the nodes in one partition they becomes

unavailable to the nodes in another partition.

So, all the nodes cannot communicate with each other and come to a general consensus.

So, these are the 2 typical type of faults which are coming from either the hardware

failure or a software failure, but a third type of faults that is the byzantine faults it is the

kind of more difficult fault to handle in a distributed environment. So, byzantine fault is

just like the example that I have shown you earlier here the node start behaving

maliciously.

Now, whenever a node starts behaving maliciously you do not know that what would be

the action for that node. The node can the node can send a positive vote or sometime the

node can send the negative vote. In case of say the crash fault or in case of a network or a

partition fault, it is still expected or you can find out or you can make a expectation that

what is going to be the effect of a network fault or a crash fault, but the effect of a

byzantine fault is difficult to guess, because it completely depends on how maliciously

the node is behaving and what the node is doing. So, sometime the node can give a vote

against a, the consensus or sometime the node can give a vote in for of the consensus.

So, that is why handling byzantine nodes become difficult in a in a typical distributed

system, but while we are dealing with different kind of consensus protocols you have to

deal with this 3 fault 3 different types of faults. Now a whenever we are talking about

distributed consensus protocols we have need to satisfy certain properties of the

protocols. So, the first property is called termination.

(Refer Slide Time: 14:46)

So, the termination properties says that a every correct individual decides and some

value at the end of the consensus protocol so; that means, who ever be the correct or non-

faulty node in the network the non-faulty node must terminate the protocol, and decide

on one value, and that value should be correct value. Then the second property is the

validity the validity property says that if all the individual proposes the same value, then

all correct individual decide on that value.

So, so that is that is the basic idea of these validity property which says that if all the

individuals in the node they propose on the same value like the example that we have

shown earlier, that if all the individual propose a value 10 then every correct nodes

should come to a consensus with value 10 they should not deviate from that particular

value.

So, that is the validity property of consensus protocol the third properties integrity. So,

the integrity property says that every correct individuals decides at most one value. And

the decided value must be proposed by some individual. So, the integrity property

ensures that the consensus value should not deviate from the values which are proposed

by individuals in the network. So, you should not get a value of 20 in the consensus, if

none of the nodes in the network proposes a value of 20.

So, this is the integrity or the third property of a consensus protocol, the fourth property

of the consensus protocol is agreement the agreement properties says that every correct

individual must agree on the same value.

So; that means, and that is the most important property of a consensus, protocol that all

the individuals in the network they must agree on the same value. So, whenever they

agree on the same value after termination we call that the system has reached to the

consensus well.

(Refer Slide Time: 16:46)

So, while dealing with consensus with deferrer we consider 2 different type of message

passing system, one type of message passing system we call as the synchronous message

passing system and the second one is the asynchronous message passing system.

So, in case of synchronous message passing system so, the message must be received

within a predefined time interval. So, we have a kind of strong guarantee on the message

passing delay and you know apriori that what can be the maximum delay of message

passing for this particular network. Now, this kind of synchronicity give you

simplification in designing the protocol, in the sense that you can think of that you will

wait for certain duration that duration will be the maximum lifetime or maximum bound

on the message delay and if you wait for that amount of duration, it is guaranteed that

you will receive all the messages within that time.

So, this is the synchronous message passing system, but in case of asynchronous

message passing system on contrary we do not have any upper bound on the message

transmission delay or the message reception time. So, you do not have any such

constraint message can be arbitrary delayed or the message delivery time can be

arbitrarily long. So, in case of a asynchronous message passing system you cannot expect

that if you wait for a finite duration you will receive all the messages with some certain

probability or with some guarantied probability.

Now, designing a distributed system in a synchronous environment is much easier,

because you have that particular strong assumption on the message passing delay. And

that is why if you wait for that amount of duration it is expected that you will receive all

the messages, but in case of a asynchronous message passing system because you do not

have that much of delay. You have to also deal with the kind of fault that may come due

to the asynchronousity nature of the system.

That means, it may happen that you are you are waiting for certain duration and you may

not receive any vote for some of the neighbours, because the message, which is coming

from those nodes in the network they have observed some kind of unbounded or

sometime of very long delay.

So, if you wait for certain amount you may not receive the messages from all the

neighbours. So, having consensus under this kind of environment is much difficult

compared to designing a consensus protocol for synchronous distributed system.

(Refer Slide Time: 19:24)

Now, there is an interesting result we called this result as FLP 85 or sometime people call

it as an impossibility result. So, the impossibility result states that in a purely

asynchronous distributed system, the consensus problem is impossible with a

deterministic solution, if there is a single even a single crash failure in the system.

So, in case of a purely distributed environment or purely asynchronous distributed

environment, if there is a single fault in the system you cannot design any kind of

consensus protocol or better to say any kind of deterministic consensus protocol for that

particular system. But in this particular impossibility theorem node that term

deterministic consensus protocol, it is true that will not be able to design any kind of

deterministic consensus protocol or we cannot have any kind of deterministic solution,

but we can always designs some kind of randomize solution or some kind of

probabilistic solution for purely asynchronous distributed system in the presence of

failures.

But, this particular a environment gives on a bound on what type of consensus protocol

you can design for a distributed environment. And this is the foundational paper

foundational work for a distributed system, which was initially proposed by Fischer

Lynch and Patterson in 1985 fan in one of the top Asian Conference and Distributed

System ACM Policy 2001 this paper got the most influential paper award.

So, I suggest all of you to look into the formal proof for the impossibility result we are

not going to that details, if you are interested you can you can look into this paper and

look into the formal proof that why it is impossible to achieve a consensus in a purely

asynchronous distributed system in the presence failure.

But, but ideally this gives us a idea about in for what type of system you can design a

consensus protocol.

(Refer Slide Time: 21:37)

Well, now whenever talk about synchronous consensus they are exist various time of

type of consensus algorithms, that people have design in a traditional distributed system

environment; like the Paxos raft byzantine fault tolerance BFT type of a consensus

algorithms people have tried to implement many of this type of consensus algorithm for

asynchronous system as well by apply probabilistic nature inside it.

So, we look into all those different type of consensus algorithm later, but, but ideally this

gives us an algorithm that what type of consensus you can design for a distributed

algorithm.

(Refer Slide Time: 22:16)

Now, the correctness of a distributed consensus algorithm, that can be characterized by

these 2 properties safety and liveness. So, the safety properties say that the correct

individual must not agree on an incorrect value. So; that means, nothing bad has

happened in the system. So, so, the safety property ensures that, you will you will never

converts to an incorrect value or the correct individuals in the network they will never

converts to an incorrect value. And the liveliness property or in some book are difference

manual they like it they like it as liveness property.

So, the liveness property states that every correct value must be accepted eventually so;

that means, something good will eventually happen. So, if you have proposing some

good values. So, that good value will be committed eventually although there can be

some time lag or there can be some delay in reaching into the consensus, but after the

consensus protocol terminates you will you will expected to get a get a consensus value

out of that.

So, these are the 2 correctness properties for a distributed consensus that we need to

ensure whenever we design a distributed consensus algorithm.

(Refer Slide Time: 23:30)

Now, let us look into the consensus a protocols from the perspective of a blockchain

environment. So, the type of blockchain environment like the bitcoin that we have

discussed till now, there kind of open environment. Open environment in the sense like

any node can join the network any type, but a type of distributed systems that we are

considering till now, like synchronous system synchronous distributed system and the

type of consensus algorithms, that have been explored for a distributed system the

traditional distributed system those kind of consensus algorithm realize on a message

passing environment.

So, a message passing environment means the every individual transfer some kind of

messages to others and then for waiting for some finite amount of time they receives all

the information from the peers, an after receiving all the information, from the peers

whatever information they have receive till now they process those information, and

based on that information they reached to a or they design a consensus parameter to

come into the consensus.

But, because this kind of traditional distributed consensus algorithm like raft Paoxs or

byzantine fault tolerant algorithm, they rely on this kind of message passing

environment, they are design particularly for a closed environments. So, in a message

passing environment you need to know that which node you want to transmit a message.

Now, the moment you have this constant like the moment you need to know that which

node you want to send a message you node need to know the identity of all those nodes.

So, that way this kind of distributed message passing algorithms for having a consensus

was mostly design for a closed environment , but for blockchain type of environment in

bitcoin applications you are mostly talking about open environment or earlier you have

used the term as a permission less environment, where any node can join in the network

any time. Now, under this kind of environment having a consensus protocol based on the

message passing argument is difficult, because you do not know that who are the nodes

in your periphery to whom you want to send a message.

(Refer Slide Time: 25:48)

Now, in case of a consensus in open system we have to broad type of algorithms the

shared memory is one architect that people have explode, but shared memory

architecture it is not suitable for internet grid computing, because you need to put a

memory which should be readable and writable by every individual nodes in the

network. In general the shared memory algorithms we apply whenever we try to reach

consensus among multiple distributed process inside a system.

But, we apply the message passing in the other case, but as I we have looked into that

message passing is not feasible in a open environment. Because in an open environment

like bitcoin anyone can join the bitcoin network any time and under this kind of open

environment the challenges that how will you ensure consensus under this particular

scenario.

(Refer Slide Time: 26:45)

So, let us look into that how do we ensure consensus and even before going to that, a let

us look into that why do we require consensus in a bitcoin network, a whenever we are

utilizing blockchain as the backbone of a bitcoin. So, as we have looked into the bitcoin

is a peer to peer network and in this peer to peer network say let us take an example, that

Alice broadcast her transactions a Alice made a transaction to bob and see broadcast this

transaction in this peer to peer network.

Now, remember that this kind of broadcast is a different from traditional message passing

system, for a traditional message passing system you need to know that which are the

peer nodes to whom you need to send a message, but this kind of broadcasting it works

like a flooding. It works like a flooding in the sense like you send the message to the

subset of the people whom you know, then those nodes will further send a message to

another subset of the people, those people will again send it to another subset of the

people this way by flooding the message in the network the message will get propagated.

So, that way it is different architecture of this flooding environment is different from a

traditional message passing environment, where you need to know that who are the

neighbours to whom you need to send a message? Now, flooding is most costly more

costly costlier compared to a normal message passing environment. So, that is why we

restrict the flooding to certain applications.

Now, in case of a bitcoin peer to peer network whenever Alice is proposing a transaction

Alice broadcast the transaction in the peer to peer network. Now here we required the

consensus, because all the nodes in this network need to agree on the correctness of these

transactions. How will you ensure that the transaction is actually coming from Alice and

not from an attacker? The attacker may also impersonate Alice and can send an

transaction in the network in the name of Alice. So, the network needs to find out come

to a consensus that this particular transaction is coming from Alice and not from an

attacker.

So, as I have mention that in this particular peer to peer network architecture and node

does not know all the pairs in the network, because this is an open environment. So, in

under that open environment some nodes can also initiate malicious transactions and you

need to prevent the system from having this kind of malicious transactions.

(Refer Slide Time: 29:33)

Now, in case of bitcoin network every node has a block of transactions that has already

reached into the consensus. So, that are the blocks of committed transactions, which is

stored in the form of a blockchain. And every node also has a list of outstanding

transactions that need to be validated against the existing transactions in the block; that

means the existing blockchain. So, that is an example.

(Refer Slide Time: 29:51)

So, you already have a block of transactions. So, these are the individual block of

transactions block 23, 22, 24, inside every block the architecture we have looked earlier.

So, you have a merkle root under that all the transactions are organized in the merkle

tree. Now, every node has this blockchain and they have a set of new transactions. So,

these are set of new transactions.

Now, this new transactions need to be committed to the block then need to be added in

the blockchain. So, to commit these existing transactions the network need to validate,

that these transactions are coming from the authenticated person and not from an

attacker. And for this we require the consensus protocol in a bitcoin network.

(Refer Slide Time: 30:47)

So, whenever we talk about the consensus in a bitcoin network. So, this is an interesting

fact that why we are applying something called a blockchain. So, you can always have a

per transaction consensus. So, you take every individual transaction and then validate

that transaction.

But, if you do for per transaction consensus it is inefficient, because you have to run the

transaction algorithm for every individual transaction. So, what we do rather than

running the transaction running the consensus algorithm for every individual transaction,

you run the algorithm on a block of transactions. So, that way you can made the

consensus algorithm much efficiency you do not need to run the consensus for every

individual transaction rather you running for a block of transaction.

So, here comes the concept of blockchain that, we are we are representing the

transactions in the form of blocks or and we are not representing it in the form of a

transactions chain rather we are we are representing it in the form of a blockchain for an

efficient implementation of a consensus.

(Refer Slide Time: 31:54)

So, that is the objective of bitcoin consensus algorithm. So, earlier we have looked into

the concept of miners who actually participate in the consensus algorithm.

Now, here we have t 3 individuals or 3 miners M 1 M 2 and M 3. So, everyone has one

blockchain in hand now everyone has constructed or observed T’s transactions from the

clients, now they construct a new block of transactions. So, M 1 has constructed of a new

block of transactions from the transactions that he or she have heard of, M 2 has

constructed another block of transactions, M 3 has constructed the third block of

transactions.

And interestingly it is not necessary that every miner will heard the same set of

transactions, there can be always the difference between the set of transactions that

would be heard by the individual miners, and that is why the proposed blocks are

different for different miners. So, the bitcoin consensus algorithm the objective is that

among these 3 block which block I will add to this existing blockchain.

So, this is the problem of bitcoin consensus algorithm. So, with this we will stop today.

In the in the next class we will look into that how the bitcoin proof up for work algorithm

actually achieves the consensus under an open environment. So, see you all during the

next class and.

Thank you.

