Computer Networks and Internet Protocol
Prof. Sandip Chakraborty
Department of Computer Science and Engineering
Indian Institute of Technology, Kharagpur

Lecture — 45
Software Defined Networking — IIT (Demo)

Welcome back to the course on Computer Network and Internet Protocols. So, in the last
classes we are discussing about this software defined networking concept. So, today we
will see then implementation of a Software Defined Architecture, Software Defined

Networking architecture.

And in our network emulator platform called mini net and we are talking about these
open flow protocol. So, we will see that how you can utilize this open flow protocol on
top of our mini net architecture to send, or receive packets or to immolate our network
topology inside your computer. So, let us have our journey on this mini net and open

flow controllers.

(Refer Slide Time: 00:59)

Socket programng

UDP client

UDP server

TCP client

TCP server

TCP server with fork
TCP server with select

TEL ONLINE

NP
IIT KHARAGPUR CERTIFICATION COURSES

So, till now we have earlier looked into different socket programming aspects. So, you
can actually in mini net you can run all these different socket programming and see that

the packets are actually traversing in the network.

(Refer Slide Time: 01:15)

Traffic analysis with wireshark

Wireshark]

dn e B x Q -
home. i B o |
‘welcome to Wireshark

Capture
his B [

bluets

Learn b
Usary Gude - Wiki - Quenatios ind Anwery - Mading Lty
g Wenshark 7.2.6 [Ry Uskngse fram uni

NPTEL ONLINE

IIT KHARAGPUR CERTIFICATION COURSES

Now to capture the packets in the internet, we have a nice traffic analysis tool called
Wireshark. So, let me first show you a demo of this Wireshark and see how you can

actually capture the packets and analyze individual packets in the network.

(Refer Slide Time: 01:34)

]

ldmzie BERE Q b U E B ¢ ¢ WO =

] 23 - Expression. *
Ma. Time Source Destination Protecol Length info et images m
1 0. G0U0G6000 19.148. 50, 150 10,95, 544 G 198 Geiknown Format |
2 0.800259084 10.145,58. 130 10.95.32.48 e 504 Uknown Format (.
10.000329084 10300242 10.140.54.138 vse 08 Unknown Format (.
4 0.838518154 10.148.58.138 16.35.32.42 GvER 539 Unknown Format [
5 0.030018401 10.188.50, 130 10,15.32.41 tivsn 113 Uniknown Format (-
6 0.838996715 10.148.58.130 10.35.32.42 [248 Unikcnown Forsat (-
T0.040112007 10,148,50, 10 10,35, 32,43 GVsP 409 bekngwn Foraal |
B 0040225028 10.140.50. 138 18.0%.32.42 ovse 218 Unknown Format (-
00, 040309400 10.148,58, 130 10.35.52.40 Grip 125 Umknewn Formal (-
10 0,040409511 10.140.50, 130 10,35,32.42 GVSP 1006 Unknown Format |-
o mon 4 i

@ 7 wireshark wind 2018081010114 NwdTH Packets. 724 - Displayed: 728 {100.0%) Profile: Defoult

. b

5 - Myt ity b e
- Hi ol

So, here that is this Wireshark interface. So, let me just open it from the scratch, so that

the things become easier for you. So, we opened a Wireshark tool.

(Refer Slide Time: 01:54)

Welcome to Wireshark -
Capture
using this MEer

wland
any

Learn
User's Gulde - Wikl - Questions and Answers - Malling Lists

unning wireshark 2.2.6 (Gt Bev Uniksown from unknown).

P Prady to boad of caphure e Packets Profile: Default

So, in that Wireshark tool this is the Wireshark home screen ok. So, here you can see all
the interfaces which are there in this machine, where you will be able to capture the

packets. Now this particular machine it is connected to the wireless LAN.

(Refer Slide Time: 02:15)

Welcome to Wireshark
Capture
using this MEer

wland

Learn
User's Guide - Wik - Questions and Answers Malling Lists

0w are running Wireshark 2.2.6 Kt Bev Unikaown from unknosn

e Packats

F Ready b boad of caplure

Here you can see it is connected to this academic SSID to the WI-FI router. So, we use
this WLAN 0 interface, where it is receiving some packet here you can see that there is a

small graph which is going on. So, it basically capture the packets which are there.

(Refer Slide Time: 02:40)

L] 2 «| Expressicn. +

Ha. Time Source Destinabion Protocd Lengéh info
10008000080 10,146 58,190 10,95 57 4% (23 B0 Unikgwn Foreat (0t) [Block 10: 1197H8314359515 78080 Packet 10; 1994
20.0080067T0 10.35.32.42 18.148.56. 130 66 Unkren Forsat (Ba33) [Block ID: B43SOMMETA0HIS0AND] Packet ID: 15238
F0.002215501 10.140.54.130 083242 122 Unknown Forsal (Bx26) [Block ID: 119EB040232044032400 Packet ID: 2001
4 B.BIINTETE 10.1468.58.130 19.35.32.42 B8 Unkmown Format (@x28) [Block ID: 1182B84B232044043824 Packet ID: 283
S 0.032305571 10.146.54.130 ¥22 Unknown Forsat (0n26) [Block I0: 11920040232048038145 Packet 10: 2013.
6 0.032445297 10.146.58.130 e 132 Unkmown Format (826) [Block ID: 11928648232044055040 Packet ID: 2001
70.00252300 10 243 Unkrown Forsal (Ba28) [Mlock 10: 11920040712044083700 Packet 10: 2013

e

P

WP

P

iR

W 264 Unknown Format (Bx20) [Block ID: 1182B04R232648003202 Packet ID: 2811

vie 121 Unkmown Format (cd) [Bleck ID: 11928640032044052224 Packet 10: 2023

WP 250 Unknown Forsat (Bx26) [Block ID: 11928640212042085248 Packet 10: 2012

e BT Unknown Format (Bx28) [Block ID: 1197B648732044043520 Packet ID: 2013

WP 1040 Unknown Forsat (8x20) [Block ID: 11520035025200086400 Packet 10: 2003

OVEF 1060 Unknown Format (8x20) (Block ID: 1382BO72117881383843 Packet ID: 2613

WP 1066 unkrewn Forsat (Be28) !lll.ut 10: 11920636003500704211 Packet 10: 2013
o et enh fBimek TR M

- 44RIBAIAAIMEINIALATE Ramims TR: G043

- (REREERER

So, let us start capturing the packet in WLAN O interface. So, here it is capturing the
packets in WLAN 0 interface.

(Refer Slide Time: 02:48)

€& & google.com «P 4| ho =

Google
Hi Sandip

§ randip<birabortyfigma. com

Enghsh [Unie States) =

So, we will open some website. So, let us refresh this Google website or go to the Gmail
website, so that we can get certain packets. Now come back to the Wireshark, stop the
Wireshark interface and here you can see all the packet. So, you can see there are lots of

packets where the protocol field.

So, here we have the protocol field the protocol field is GBSP. So, this GBSP is
something called GIE vision protocol which is used in tumbler kind of application which
currently I am using for recording. So, it is capturing lot lots of such packets GBSP kind
of packet it should also capture certain TCP packet.

(Refer Slide Time: 03:34)

AB20 BERB Qe 2 HUE (@ oe 0

v

L] 0 Epresicn,.. ¢
Ha. Time Source Destinabion Protocd Lengh info

5279 14. 488045401 10.146.58.130 10.35.2.2 vse &6 Unknown Format (8x2?) [Block I0: @ Packet ID: 9241888] Unknown Pa_

5240 14, 490057021 10.95.32.42 18,148,568, 130 L &6 Unknten Forsat (Bo58) [Block 10: O Packet ID: 11732224] Unkagwn B

5241 14, 30380507 172.16.2. 30 19.148.50. 130 TLsv1.2 278 Application Data, Application Data, Apnlication Data L

542 14 SAT3094WB0 16.148.58.130 172.18.2. 3 Tigwd 185 Application Data

5243 14, 590138162 172.10.2.30 10.148.50. 104 TLswl! 157 Application Duta

5244 14.508722678 172.16.2.38 18.146 58. 130 e 66 8088 - B4708 [ACK| Seqe64380 Ack=2784 WiN2AZ2328 Len=h TSval=3393

54T 14,512081504 10,146.54, 130 178.18.2. 50 e &6 54172 - S0B0 [ACK]| Seq=l Ack=1 Win=I9n0d Len=d Tival=185i581 Tdec
5248 14,512143987 10.146.58.130 72.18.2.00 TR 27T CONNECT wwiv.gstatic.com:d4 HTTR/1.1

5249 14.514517000 172.16.2.30 18.1468 56.130 e 6 8088 - SATT2 [ACK] Seq=1 Ack=212 Winc263328 Len=0 TSvil=319333853
6250 14, 524204300 10.140.54.130 10.35.32.42 g B0 Unknen Forsat (@xZ2) [Block ID: 1289 Packet I0: B241080] Uaknown.
5251 14.5243393081 10.146.58.138 18.36.32.42 VP 139 Unknown Format (8c2?) [Block ID: 1288 Packet ID: 5241858) Unknown.
6252 14, 524200071 10,146,54. 130 10.35.32.42 Ll A4 Unknown Forsat (Bx22) [Alock 10: 1280 Packat 10: S241088) Unknown.
783 44 EaEesaEOE 45 sen ES 48 a0 w32 an PR AR e Carmat (0v07) (Bimad TRe 4780 fesbab TR0 03680801 timbnem

HaiPr_10:ce:03 (dB:Sd:e2:10:ce:93), Dst: ALL-HSRP-routers 4d (06:00:0c:07:ac:4d)
10.148.58,130, DSt 10.35.32,42
44211, Dst Part 2

@ 7 witeshark wlan 20180810103530 tgnkie Packets. #967 - Displaved: 0967

So, here is some TCP packets you can see so here are the TCP packets. Now whenever

you are selecting one of these packets. So, let me choose one packet here.

(Refer Slide Time: 03:50)

] [= QT .
Ma. Time. Source Destination Protoced Length info
5232 14.4771855T0 10, 145,50. 1 19.35,32.41 o 0 Unknown Format (8x28) [Block ID: 1280 Packet I0: S241888) Unknown.
| 233 14 4TRASEMME 10.35.33.42 18.146.58, 130 i 83 Unknown Format (de53) [Block I0: 512 Packet 10: 11T32234] Unknown.
8234 14, 470006985 10.146,58.130 10.35.32.42 WP 66 Unknown Format (Bx21) [Block I: @ Packet 10: 9241808] Unknown Pa.
5235 14483162230 10.35.32.42 18.148.58.130 GSP [y 66 Unknown Forsat (BuS4) [Block ID: @ Pucket ID: 11732224] Unknown P
5230 14, 493839950 10.39.92.40 10.146.50, 130 iR B3 Unknown Format (o) [Block ID: 512 Packet I0: 11TI2ZM] Unknown.
5237 14, 4BBOJSIE] 10,146.58.130 18.35.32.41 I 134 Unknown Format (Bx22) [Block ID: 1288 Packet ID: S241088) Unknown_
| G238 14.4B8212701 10,146,54.130 10.38,32.42 e 490 Unkmown Format (fx?) [Rlock ID: 1280 Packer 10: 241084 Unknown.
| 5239 14,48B045601 10.146.58.138 18.35.32.42 [6 Unknown Format (Bx22) [Block ID: @ Packet ID: 9241808 Unknown Pa_
5248 14490057032 10, e 86 Unkown Format (Guc50) [Block I0: O Packet 10: 11732234] Unknown P
| 5241 14, 5600352 16.146,58, Svl, Anplication Data, Application Data, Applicatien Data
5247 14 50730h0 1712.18.2.38 Tiiwl.? 165 Application Bata

8243 14.500108067 172.16.2.00 10.148.50. 100 TLswl.2 157 Application Dwta
5244 14. 588722678 172.16.2.38 18.146.58.130 P 66 8088 - B4708 [ACK| Seqe84380 Ack=27B4 WIN=262328 Lenzd TSval=3393

DomM, Dst Port: S4788, Seq: 63096, Ack: 2785, Len: 24

@ 7wtk wland 1018081010530 Rgaki Packitic p98T - Dipl

So, the protocol it shows us TLS version 1.2 which is the transport layer security
encrypted TLS encrypted packet. So, the Google whenever it sends the packet over the

TCP protocol, it uses TLS to ensure the security at the transport layer.

(Refer Slide Time: 04:11)

5232 14477165570 10.140.58.130 18.35.22.42 86 Unknown Forsat (@x20) [Block ID: 1280 Packet 10: 9241884] Unknown

Frotoc
[

5233 14476050085 10.35.32.42 10.148.56, 130 Ll 3 Unkngwn Format (Bu53) [Block ID: 512 Packet 10: 117T32234] Uaknown

5234 14,47HO0G9RS 10.140.54.130 10.385.22.82 WP 6 Unknown Format (Bx21) [Block ID: @ Packet 10: 9241008] Unknown Pa

5235 14.483162200 10.35.32.40 18.148.58. 134 WP 6 Unknown Format (Bu54) [Block ID: & Packet ID: 11732224] Unknown P.

236 14, 483429980 10.35.32.42 10.146.50. 130 Wi B3 Unknown Forsat (Bx54) [Block ID: §12 Packet 10: 11732224] unknown

5237 14.480029383 10.146.58.138 18.35.32.42 WP

114 Unknown Format (Bu22) [Block ID: 1288 Packet I0: S241088) Unknown

Now, inside this packet if you look into this second window, this second window actually
gives you the packet details at the different layers. So, this is a nice way to visualize the 5
layers of the TCP/IP protocol stack. So, here let us start looking into again this top down

approach the way we are following the course.

So, where you can see that you have this SSL packet which is the encrypted data bits that
we have, after that we have these HTTP header. So, in that HTTP header we are
connecting to a proxy just contains the proxy information, because the packets that we
are sending from this machine, it is sent to HTTP proxy server, and from that HTTP

proxy server it is going to Google.

So, the packet which is sending to Google it is inside that secure socket layer that layer
which is the encrypted data. So, you can see that it contains this application data protocol
it says about HTTP over TLS. So, here it gives the application data the TLS version 1.2
the length, and the encrypted application data, so this is the encrypted part of the
application data. So, there are three different TLS record blocks. So, the entire data is
divided into three different TLS blocks and that contains the entire application data. Then

this HTTP extension which contains the proxy information, then we have the

transmission control protocol at the TCP port. So, you can see that the TCP details are

there.

So, here my source port is 8080, the destination TCP port is 54768, the stream index is
something like 1, the single stream the segment lane it contains the TCP sequence
number that we have seen for the transmission control protocol, the next sequence

number, the acknowledgement number, and the header length, certain TCP flags.

So, in the TCP header there were multiple flags. So, those flag bits are here the window
size the receiver advertised window size, and accordingly the calculated window size.
And the checksum field, the urgent pointer, then the TCP option field, and the sequence,
and the acknowledgement field.

(Refer Slide Time: 06:38)

Time Sauirce

5 Destination Length info
5232 14.4TT10%570 10.146.58.138 19.35.32.42 86 Unknown Forsat (8x2d) [Block ID: 1280 Packet ID: 5241888] Unknown

5237 14,45BB2933 10.146.58.138 19.35.32.42 134 Unknown Format (Bc2?) [Block ID: 1288 Packet ID: 5241858) Unknown.

Frotoo
VR
5333 14 dTOSENMS 10353240 18.146.58, 130 e &3 Unkmosn Format (fx53) [Block ID: 512 Packet I0: 3ITI2ZM] Unknown, -
5234 14, 470008305 10.140.54.130 19.38.32.42 e 66 Unknown Forsat (Gx21) [Block I0: @ Packet I0: 9241088] Unknown Pa. 4
5235 14483162230 10.35.32.42 10.148.58. 130 wse 6 Unkpown Forsat (Bv54) [Block ID: O Packet ID: 11732224] Unknown B_
5236 14, 4MM259] 10.09.02.42 1.148.50. 130 Lo B3 Unkngwn Format (Bcd) [Block ID: 512 Packet ID: 1ATI22H4] Uakncwn
VP

Then you can look into the IP header. The next layer is the IP header inside the IP header
you can see that the source address and the destination address. Now the source address
that [have 172 dot 16 dot 2 dot 30 that is the IP of the proxy address that we have in our
IIT Kharagpur network. And the destination address is 10 dot 146 dot 58 dot 130 that is

the address of this machine.

(Refer Slide Time: 07:07)

valid_Lft forever p
2: ethd: <NO-CARRIER,BROA
te DOWN group default qlen
link/ether 48:0f:cf:d
inet 10.0.0.11/24 brd
id_Lft forever preferred_
ROADCAST,MULTICAST,UP,LOWER_UP> mtu 15008 qdisc mq state UP gro

link/ether d8:5d:e2:10:ce:93 brd ff:ff:ff:ff:ff:ff
inet 10.146,58.130/17 brd 10,146.127.255 scope global dynamic wlan®
valid 1ft 80327sec preferred 1ft !
inet6 feBO::cBc:ceSbie65a:Tcal/64 scope link
. eferred 1ft forever

7: ovs-system: <BROADCAST,MULTICAST> mtu 1500 qdisc noop state DOWN group
default qlen 1

link/ether c6:69:78:9d:aa:27 brd ff:ff:ff:ff:ff:ff

So, if you if you just try to see the IP of this machine you can see that say so in the
ethernet address the loopback address well. So, here you can see that the WLAN address
is it is connected to the wireless LAN interface. So, the address is 10 dot 146 dot 50 dot
130 the address of this machine. So, here also the destination address is 10 dot 146 dot
58 dot 130 the address of this machine.

So, the packet has been received from the HTTP proxy that we have IIT, in IIT
Kharagpur to this machine and the different field in the IP header. So the IP header
length the flag bits in the IP header, the fragmentation information. Then the upper layer
protocol, so it is using TCP protocol, then the source destination, this IP layer header

information.

(Refer Slide Time: 08:28)

i @ BFRE Q s R E

i 0 - |Epieiiien... +
Mo Time Source Destination Frotocd Lengfh Info
5232 14. 477105570 10.146.58.138 18.35.32.42 86 Unknown Format (Bx20) [Block 10: 1289 Packet 10: 9241888) Unknown
5233 14,478050085 10.35.32.42 18 . 3 Unkngwn Format (Bu53) [Block ID: 512 Packet 10: 31712234] Unknown.

5234 14, 47E000UR0 10.146.58.138 19.35.32..

5235 14 483102250 10.35.33.40 iB.148 58,130 86 Unkmown Format (@xSd) [Block ID: @ Packet ID: 11732234 Unknown P

5230 14, 480429952 10.35.32.42 10.146.50, 130
A

5237 14.488029381 10.146.58.130

2 Unknown Format (Bx8a) [Mlock ID: 512 Packet ID: 11732224] Unknown.

WP

58,130 e

2.4 WP 0 Unknown Foreat (#x21) [Block ID: O Packet ID: B241008] Unknown Pa.
i
WP
[114 Unknown Format (Bx22) [Block ID: 1288 Packet I0: 5241088) Unknown_

@ 7 ixhemnet (ehl. 14 ytes Packets: #957 - Disglayed: 9967

Then you have this ethernet information. So, the ethernet information you can see from

here and finally, the link layer information.

(Refer Slide Time: 08:34)

i B - bpreica,.
hio. Time Source Destination Protocd Lengeh info
5232 14.4771055T0 10,140,58. 130 P 0 Unlknown Forsat (8x28) [Block I0: 1289 Packet ID: 8241088) Unknown.
5233 14, 4Te05604E 10.35.32.40 e &3 Unkmown Format (Su53) [Bleck ID: 512 Packet I0: 31TI2ZM] Unknown.
5234 14.476006385 10.146,58.130 WP 6 Unknown Format (Bx21) [Block I: @ Packet 10: 9241008] Unknown Pa.
5235 14483162730 10.35.32.42 [6 Unknown Forsat (BuS4) [Block I0: B Packet ID: 11732224] Unknown P_
5200 14.400039952 10,05, 32.42 Wi) Unkrown Format (#xS4) [Block I0: 512 Packet ID: 11732228 Uaknown.
10,146.58. P 134 Unkpown Format (8x22) [Block ID: 1288 Packet ID: S241088) Unknown_
ed (2232 b

5237 14, 48829363

So, the data link layer has two sub part the logical link control and the Mac. So, this
frame information that is coming from the Mac and this ethernet information coming
from the LLC. It contains the packet arrival time, the epoch time, the frame length and
different other fields which are there to indicate the link layer information. That way

using Wireshark you can actually look into different type of packets say for example, you

can see that this is a TCP SYN packets. So, it is marked as a SYN. So, if you look into
the TCP header for this packet, I well yeah the TCP header.

(Refer Slide Time: 09:24)

Time Source Destinatior ol Lengeh nfo
5237 14, 4260250681 10.146.58.138 19.35.32.42 114 Unknown Forsat (8xc2?) [Block ID: 1280 Packet ID: 5241888] Unknown

5238 14, 48212701 10.146.54.130 18.35.32.42 48D Unkmown Format (fx2?) [Block ID: 1280 Packer I0: 9241088 Unknown,
5239 14, 488043660 10.140.58.130 10.35.32.02 60 Unkmown Format (8x22) [Block ID: 0 Packet ID: 9241008] Unknown Pa

5240 14.496057022 10.35.32 .42 18.146.58.134 &6 Unkmown Forsat (8uS4) [Block ID: @ Packet ID: 11732224] Unknown P.

SR

So, if you look into the TCP header for that packet you can see that the SYN bit is set.
So, it is basically a SYN packet to initialize the TCP connection. So, you can see that a
SYN is so here you can see interestingly the TCP three way handshaking mechanism. So,
the SYN packet has been sent with sequence number 0 and certain window size, then
you can see a SYN ACK; then followed by another ack. So, this three way handshaking

is happening here.

So, that way using this Wireshark tool you can actually capture all the packets which is
coming in your machine. And you can analyze them you can see what are the different
packets coming to your machine and how to process those packet look into different
header fields at a different layer of the protocol stack and explore it further ok. So, that is

brief idea about how you can do the packet analysis using Wireshark ok.

(Refer Slide Time: 10:29)

Computer Network Larning

* Best way to learn computer network is experimenting on existing network
— May not be available for everyone
~ Have limited access
— Expensive to setup
&
+ Emulated network in a computer
— Independent of existing network
— Can be setup as required

! NPTEL ONLINE

IIT KHARAGPUR CERTIFICATION COURSES

So, next we will look into that how you can emulate a computer network in a single
machine? So, that is the emulator platform which is again is done based tool that we are
going to discuss in little details. So, in computer network the best way to learn a

computer network is experimenting it on the existing network so that is always.

So, if you run your own protocol if you say design a protocol implement it and make a
run on a on your network, so that is the best way to do. But the problem is that if this
kind of existing network it may not be available for everyone. So, to get access to an

existing network is a difficulty.

So, some time it may happen that you have a limited access to the network. For example,
we have certain limited access in IIT Kharagpur network you cannot run anything over
the IIT Kharagpur network. Because it is a public network and if you want to design your
private network or want to set up your private network it is expensive to make a setup of
your private network. So, that is why what we do? You try to emulate a network topology

in a computer.

So, there are multiple simulation platform which has been used historically to understand
the behavior of a computer network. But simulation platform has many limitation
because it is not using the exact protocol stack which is running inside your machine. So,

that is why many of the time a simulated network does not give you an ideal information

about how your protocol can perform in a real environment. But on the other hand the

emulated network has that capacity.

So, in a case of a emulated network the difference from the simulated network is that you
are not simulating in a hypothetical, or a virtual environment rather what you are doing?
You are utilizing the network protocol stack the implementation inside the kernel itself
the actual implementation which is going to run in a real network. And on that
immolated platform you are testing that how the performance of your network is going to
be. So, the advantage is that it is independent of the existing network and it can be set up

as required ok.

(Refer Slide Time: 12:38)

Network in a Comuter

* Part of computer networks in physical network

S

Routers Switches Hosts/servers Link

' NPTEL ONLINE

IIT KHARAGPUR CERTIFICATION COURSES

Now, here are the different parts or different components of computer networks in a
physical network. So, you have the routers, you have the switches, you have different

host and the server and you have the link.

(Refer Slide Time: 12:53)

Network in a Comter

+ We can emulate these components using Mininet

Virtual namespace for legacy network,

Open vSwitch for Software driven network

ey Open vSwitch

U

—_— .
Virtual namespace

Virtual link

0
|

' NPTEL ONLINE

IIT KHARAGPUR CERTIFICATION COURSES

Now, in a virtual domain, or an emulated domain whenever we are emulating it using
this mini net platform. So, we call mini net as a network inside the computer, a emulated
network inside the computer. So, these routers are implemented using called something
called a virtual namespace for legacy network or open v switch for software different

given network.

So, Open vSwitch is a tool chain which provides switch implementation in an open
platform open platform, or open source platform. You have that Open vSwitch
implementation and using Open vSwitch you can emulate a switch using the kernel
protocol stack which is there in your Linux operating system. Then a switch can again be
emulated using a Open vSwitch platform, host can be emulated using a virtual
namespace a namespace is basically instance of the protocol stack which works like a

individual hosts.

So, you have this entire protocol stack implementation inside your computer. Now you
are creating a virtual instance of that protocol stack and emulating it at as an individual
host. So, this entire architecture you can just think of the way we do the operating system
level virtualization. So, I think that you have heard about this kind of virtual machine,

and the tools like virtual box.

So, in a tool like virtual box what we do? We do the operating system level

virtualization. So, you have this virtual box on top of you can have multiple vmswitch

are running, and inside every vm you can run one different operating system. So, one vm
can host a ubuntu operating system, another vm can host a say windows operating
system, a third vm can host a feather operating system. And all this thing can run on top

of a host operating system.

I a similar way here we are emulating the network using this virtual namespace, and a
virtual switch concept where the network protocol stack implementation is there inside
your kernel. And we are creating a virtualized instance of that protocol stack. So,
whenever you are creating constructing a virtual host; that means, you are creating you
are taking a virtual instance of the entire TCP IP protocol stack of the 5 layers and
considering it as a virtual namespace. So, the term namespace actually indicates a virtual

instance of this end to end protocol stack.

So, you are taking a virtual instance of that and considering it as an as an a individual
host. Now if we are going to implement a switch or a router then at the layer three of the
protocol stack you need to run the routing functionalities, or at layer two of the protocol
stack you have to run the switching functionalities, or layer two functionalities, so that

you can implement with the help of this Open vSwitch.

So, the Open vSwitch will adopt the virtual switching functionalities or the routing
functionalities on top of that namespace the protocol stack namespace. And then you can

emulate the links the physical links using virtual links.

(Refer Slide Time: 15:49)

Network in a comter

* Simple computer network (Physical)

Firefox HTTP server

Ni@ D

' NPTEL ONLINE

IIT KHARAGPUR CERTIFICATION COURSES

Now, this is a kind of simple computer network in the physical domain you have one
host which is running say a browser like Firefox, it is connected to a network switch or a
router that is again connected to a HTTP server. So, using the browser you can browse

the data from the HTTP server.

(Refer Slide Time: 16:08)

Network in a comter

Host namespace Host namespace

Linux Kernel Openvswitch kernel modul

' NPTEL ONLINE

IIT KHARAGPUR CERTIFICATION COURSES

Now, the same thing you can implement inside a single machine. So, here you have your
Linux kernel; in that Linux kernel you have this open vswitch kernel module which runs
the switching functionalities by taking a virtualized instance of that TCP IP protocol
stack and then you have two different namespaces host namespaces. So, these two
different host name paces, again have a virtual instance of these 5 layers of the TCP IP
protocol stack, and they are in the application site you are running a Firefox, then you
have a Linux kernel which has this virtual implementation of the protocol stack and then
the ethernet 0 which is a virtual link which is connected to this Open vSwitch kernel

module.

So, it is connected with this logical switch at the virtual switch and the other host name
space you have HTTP server running at the application and the remaining part of the
protocol stack along with the virtual link through this eth 0 which is being connected. So,
that way the physical network you can implement in a machine using this virtual instance

instances of the network.

(Refer Slide Time: 17:16)

Network in a comter

+ Use Mininet to create the network
-$ mn --topo single,2 S

-$ mn --topo single,3 B >JH

-$ mn --topo linear,3

! NPTEL ONLINE

IIT KHARAGPUR CERTIFICATION COURSES

So, now how you can create such kind of topologies in a network in a computer, we can
use the mini net tool I will show you a demo of that mini net tool, but before going to

that just showing you some simple comments inside the mini net tool.

So, this mini net tool you can this is a open source tool, you can install it from the mini
net website. So, from the mini net website you can even get the image under different
kind of operating system or you can also get the source, you can compile it from the
source and install it to your Linux based machine. So, in the mini net command if you
type the command like mn; mn is corresponds to the mini net minus topo single 2 what it
will do? It will create a topology like this; it will have a single instance of the switch and

two different hosts.

So, if you make it mn minus minus topo, single 3, then you have a single switch with
three different hosts. If you make it as mn minus minus topo linear 3, it will create a
linear topology of the three switches and one host will connect with each of the switch.

So, this is the topology corresponds to that.

(Refer Slide Time: 18:27)

Network with controller in computer

-

i

— Smart switch

- $ mn --topo linear,2,3 --controller=remote

' NPTEL ONLINE

IIT KHARAGPUR CERTIFICATION COURSES

And then if you want to create say a complicated topology, so, here what we are doing
that we are creating a topology like this linear 2, 3 and this is a kind of SDN topology
that we are going to implement. In the last lecture we have discussed about this SDN
architecture we have the switches, and the switches are connected to a controller. So, that

thing we are going to emulate here using this SDN mini net networking platform.

So, what we are going to do, we are having this mn minus minus topo; linear 2, 3, linear
2, 3 means you have a linear topology of two switches which are being connected and
three host are connected with every individual switches, and then we have specifying
minus minus controller equal to remote. That means, we are having a controller which is
there in the remote machine and that controller is connected to the switches. Now in that

controller you have to load individual controller software.

So, in the last class we are discussing that there can be multiple such controller platforms
like ryu like that porks like open daylight, like floodlight, there are different kind of
controllers you can pick up your favorite controllers and attach it with this virtual
controller that you are designed. And then with that virtual controller you can actually try
to do the experiments by setting up by writing your code inside the controller, by writing
your network application inside the controller and then running it over this kind of

emulated network.

So, now let us go for a demo of this entire procedure.

(Refer Slide Time: 20:04)

<ND-CARRIER ,BROADCAST ,MULTICAST,UP> mtu 1500 qdisc pfifo_fast sta
group default qlen 10060
ether 48:0f:cf:db:e@:9d brd ff:ff:ff:ff:ff:ff

valid_Lft forever preferred lft forever
3: wlan0: DCAST,MULTICAST,UP,LOWER_UP> mtu 1500 gqdisc mq state UP gro
up default ql

link/ether d8:5d:e2:10;ce:93 brd ff:ff:ff:ff:ff:ff
inet 10.146,58.130/17 brd 10,146.127.255 scope global dynamic wlan®
valid 1ft 80327sec preferred 1ft 80327sec
inet6 feBO::cBc:ceSbie65a:Tcal/64 scope link
valid_Lft forever preferred lft forever
: ovs-system: <BROADCAST,MULTICAST> mtu 1500 gdisc noop state DOWN group

8:9d:aa:27 brd ff:ff:ff:ff:ff:ff

So, what we are going to do is first we.

(Refer Slide Time: 20:09)

So,. So, first we will run mini net instance with we create a topology of a single switch
and three different host. So, let us do it pseudo mn minus minus topo. So, you have to
run it is in the pseudo instances, because it run as a ryu you are going to access the kernel

protocol stack.

So, that is you require the root access, single comma 3 the way I have shown you earlier

like we have a single switch with three different hosts connected to that switch. Then

minus minus mac, minus minus controller remote, minus minus switch ovsk. So, here it
says that I am going to have a controller which is now going to connected with the

switch and those which are of type ovsk switches.

So, I have to give the root password oh sorry I have made a typo here it should be
controller ok. Now you can see here what has happened first whenever it is trying to add
the controller, it was not able to contact the remote controller at the local machine. So,

we are saying that we are going to run the controller in the local machine.

So, the controller normally runs in two different out of the two different port 6653 or
6633. So, it is searching for the controller, but currently we have not executed any
controller. So, it was not able to find the controller and it has added three different host h
1 h 2 and h 3 and added a switches called s 1 and the linksareh 1tos1,h2tos 1 andh

3 to s 1 a kind of star topology. So, three hosts are connected to one switch.

So, it has configured the three hosts, started the controller, but the controller it was not
able to connect and one switch has been started. So, now, you got the mini net console
here, now from that mini net console if you try to say ping something. So, we make the

command as h 1 ping h 2.

So, whenever we write h 1 ping h 2; that means, from the virtual namespace of h 1, the
protocol stack which is there the actual protocol stack which is there from there we are
going to execute the ping command and we are trying to ping the host h 2. So, here if

you try to ping it you can see that it is not getting pinged.

(Refer Slide Time: 23:22)

arting controller
starting 1 switches

rting CLI:
h1 ping h2
) bytes of data.
ion Host Unreachable
n Host Unreachable
n Host Unreachable

So, it says that the destination host is unreachable.

(Refer Slide Time: 23:29)

Jestination Host U
Destination Host Unr
eq=5 Dest
=6 Dest

Similarly, if you try to ping from say h 2 ping h 3, none of the machines will get pinged

it says destination host unreachable.

(Refer Slide Time: 23:46)

Now, let us run the controller. So, what will do under this mini net directory, we have we

are going to use the ryu controller.

So, we are going to the directory ryu and starting the controller. So, ovs vsctl. So, this
ovs vsctl command is used to start a controller and attach it with a corresponding ovs
switch set bridge, we are trying to set the controller in the bridge mode and it will be
connected with s 1. So, s 1 is going to work as a bridge mode with which the controller is

getting connected 10 protocols equal to open flow 1 3.

So, we are specifying that we are going to use open flow version 1.3 at my protocol smrl.
So, the password now we are going to start the controller. So, what we have done here
we have with this ovs vsctl command with this s 1 which is working as the bridge mode
with that we have configured t to hit this open flow version 1.3 protocol stack, now we
are going to run the switch run the controller. So, to run the controller we are going to

ryu manager, going to run ryu manager in the verbose mode.

So, that we can see what is going to happen here and the controller program that we are
going to run. So, on the controller you have to run certain applications. So, that
application will take care of configuring your switches that we have learned in the last
class, it will configure the switch and it will install the forwarding rules inside that

switch.

So, here we have written a python script, which is actually a default python script used
inside the ryu controller and that python script actually works like application of a
forwarding manager. It helps you to forward the packet from one machine to another
machine. So, we are going to run that one, it is simple switch with version 13 dot p y. So,
that is the python application which you have written or indeed it was a default
application in ryu; once you install ryu you can get that as well. So, that particular

application we are going to run here ok.

(Refer Slide Time: 26:33)

So, it has executed that one, and after that it has getting connected with the

corresponding switch now, let us try to run it h 1 ping h 2.

(Refer Slide Time: 26:48)

Unreachable

nre abLe

ecelved, 0%
18.857/4.8

Now you can see it is getting pinged and when it is getting pinged let us look into few

events which are happening here.

(Refer Slide Time: 27:03)

- (ff:ff 1
ntOFPPacketIn
a1 2

Here you can see there was some event which has been locked. So, this event you can
see certain packets are coming to the controller and based on that packet, it is

configuring the corresponding switches.

So, the controller events are being logged here.

(Refer Slide Time: 27:23)

And here it is getting pinged and we have an interesting observation here, if you look
into the response time of the switches. So, you can see that the first packet that was sent
it has a longer time. It it has taken a time of 4.84 milli second whereas, the remaining
ping packet it has took around 0.16 millisecond and 0.03 millisecond, 0.02 milliseconds

something like that, but the first one has taken certain more time why that is so?

If you remember in the last class that I have discussed, that how this entire controller
architecture is going to work for the first packet whenever it reaches to the switch, the
switch does not have any information about how to process that packet or how to
forward that packet. So, what the switch has done the switch will send or generate a open
flow event, which will reach to the controller. So, the event we can see in the other tab

the open flow event that have been generated.

So, this open flow events will be generated and it will be sent to the corresponding
switch, and then that particular switch will send that event to the corresponding
controller, the ryu controller application that we are running. So, that particular
application the switching application, it will generate the rules and configure the switch
with that particular rule and then the packet will get forwarded and during that in

between time, the packet will remain inside the buffer of the switch

So, for the initial packet we see a certain longer delay for, but for the remaining packet

that delay shall less.

(Refer Slide Time: 29:01)

time 4999ms

time 8998ms

mininet

W m shigars

Again if [run it, you can see that the delays is comparatively lesser. Only for the first
time it has took that initial longer time. Similarly now in this case if I run it in a different

case.

So, earlier I have done h 1 ping h 2, now say run it from the h 2 host.

(Refer Slide Time: 29:25)

So, if we run the ping from h 2 host to h 3, again you can see that the first packet has

took some longer time to forward the things. So, that way you can actually run this entire

controller and the switches and emulate the topology by using this mini net emulator

network emulator platform.

(Refer Slide Time: 29:44)

Now, briefly and you can see here that all these events have again executed for different
notes. Now let us look into the application that we had written in python. So, I will

quickly show you the application which is there.

(Refer Slide Time: 30:06)

simple sw
simple_sw

So, inside the app directory you can see that there are multiple applications which are

there. So, you can actually play with these applications which are there and they will

start writing your own application using this python programming. So, simple switch 13

dot py ok.

(Refer Slide Time: 30:30)

ryu.lib. packet ether_types

|58

datapath = ev.msg.datapath

ofprot tapath.ofproto
= datapath.ofproto_parser

So, here what we basically do? A simple switch thirteen class has been defined and
inside that, we are defining different functionalities. The initial the initialized
functionalities the a switch feature handler which handle different features inside the

switch and then the interesting part is this add flow things.

(Refer Slide Time: 30:50)

buffer_id:
mod = parser.OFPFlowMod(data =datapath, buffer_id=buffer id,
i match=mat

mod = parser.0FPFlowMod(datapath=datapath, priori
match=match, instructions=

datapath.send_nmsg(mod)

So, this add flow will add a new rule corresponds to a new flow. So, what it will do. So,

this add flow it will call this packet in handler.

(Refer Slide Time: 31:07)

datapath.send _r

(ofp_event.Event(In, MAIN DISPATCHER)
(self, ev):

msg_len < ev.msq.total len:
1f. logger.debug(
ev.msg.msg_len, ev.msg.total_len)

So, this packet in handler actually handles one open flow packet. So, whenever our
packet in event occurs; that means, a packet is waiting at the switch and you have

received that packet in event at the controller side.

(Refer Slide Time: 31:23)

etIn, MAIN |

otal_len:

sg_len, ev.msg.total_len)

[

pkt = packet.Packet(msg.data)
eth = pkt.get_protocols(ethernet.ethernet)[6]

eth.ethertype == ether_types.ETH_TYPE_LLDP:

So, what we are actually doing. So, you can see that we are extracting the port; we are
extracting the packet parameters, the packet equal to packet message the data then the

ethernet header.

(Refer Slide Time: 31:35)

eth = pkt.get (ethernet.ethernet)[0]

ETH_TYPE_LLDP:

dpid = t
self.mac_to_p

self. logger.info(, dpid, src, dst, in_port)

self.mac_to_port[dpid][src] = in_port

dst in self.mac_to_port[dpid]:
out_port = self.mac_to_port[dpid][dst]

out_port = ofproto.OFPP_FLOOD

= ssCmininetpdf —4.. @ Gmail-Mscills F

From the ethernet type, we are looking into the type and then we are taking the source
address and the destination address from the ethernet interface. We are looking into the
data part id and then generating the forwarding rule. So, here the forwarding rules are

generated.

So, we are learning the MAC address. So, here we are doing the forwarding. So, the
forwarding is dumped at the MAC address, in the later lecture you will learn how to how
you can use MAC address for do the forwarding. So, these forwarding rules are being

generated.

So, based on that we are generating the output port; so, where the packet will be
forwarded next. And accordingly the action has been defined and then we are installing a

new rule to in the switch.

(Refer Slide Time: 32:25)

self.mac_to_port[dpid][src] = in

f dst in self.

out_| 21f.m

out_port = ofpr
actions = [pars

out_port != of
match = parser. in_port=in_port, eth_dst=dst, eth_src=src)

msq.buffer_id != ofproto.0FP_NO_BUFFER:
self.add_flow(datapath, 1, ma actions, msg.buffer_id)

self.add_flow(datapath, 1, match, actions)

data =

So, these new rules or this with this with this add flow command in the data path, the

new rule is being installed inside the switch.

(Refer Slide Time: 32:34)

self.add_flow(datapath, 1, match, actions)

data =
.buffer_id == ofproto.0FP_NO_BUFFER:
data = msg.data

datapath.send_msg(out)

So, then we are making a packet out event.

So, this packet out event will actually send the information from the controller to the
switch and it will send that message to the data path from the data path. So, that way so,

it has it is own construct you have to learn that what are the different functions or

different classes which are being available in the mini net and accordingly try to learn

this program.

So,. So, I will suggest you to explore this further to explore this code if you are familiar
with the python language, and start a, with playing with this kind of code. And if you are

not familiar with python language, do not worry there are other controller as well.

So, for example, there are this open daylight controller which is written in java, you can
try with those controller as well. So, you can choose your controller which is preferable

to you and start playing with that.

(Refer Slide Time: 33:32)

net) not found in PATH. Plugin is not loaded.

So, that is something we wanted to discuss in this particular class.

So, hope you got an idea about how to process these entire things and run a SDN
controller in your local machine. So, I will I will suggest you to play with this mini net
emulator platform and the different kind of protocol that you are learning execute it on

top of that.

So, you can even execute a socket programming from this individual host, just like we
have executed the ping application. You can run your socket programming application
and run in tier. So, explore it further. So, hopefully you will get a nice understanding or

nice insight of this network protocol stack so.

Thank you all for attending this class.

