
Computer Networks and Internet Protocol
Prof. Sandip Chakraborty

Department of Computer Science and Engineering
Indian Institute of Technology, Kharagpur

Lecture – 45
Software Defined Networking – III (Demo)

Welcome back to the course on Computer Network and Internet Protocols. So, in the last

classes we are discussing about this software defined networking concept. So, today we

will see then implementation of a Software Defined Architecture, Software Defined

Networking architecture.

And in our network emulator platform called mini net and we are talking about these

open flow protocol. So, we will see that how you can utilize this open flow protocol on

top of our mini net architecture to send, or receive packets or to immolate our network

topology inside your computer. So, let us have our journey on this mini net and open

flow controllers.

(Refer Slide Time: 00:59)

So, till now we have earlier looked into different socket programming aspects. So, you

can actually in mini net you can run all these different socket programming and see that

the packets are actually traversing in the network.

 (Refer Slide Time: 01:15)

Now to capture the packets in the internet, we have a nice traffic analysis tool called

Wireshark. So, let me first show you a demo of this Wireshark and see how you can

actually capture the packets and analyze individual packets in the network.

(Refer Slide Time: 01:34)

So, here that is this Wireshark interface. So, let me just open it from the scratch, so that

the things become easier for you. So, we opened a Wireshark tool.

(Refer Slide Time: 01:54)

So, in that Wireshark tool this is the Wireshark home screen ok. So, here you can see all

the interfaces which are there in this machine, where you will be able to capture the

packets. Now this particular machine it is connected to the wireless LAN.

(Refer Slide Time: 02:15)

Here you can see it is connected to this academic SSID to the WI-FI router. So, we use

this WLAN 0 interface, where it is receiving some packet here you can see that there is a

small graph which is going on. So, it basically capture the packets which are there.

(Refer Slide Time: 02:40)

So, let us start capturing the packet in WLAN 0 interface. So, here it is capturing the

packets in WLAN 0 interface.

(Refer Slide Time: 02:48)

So, we will open some website. So, let us refresh this Google website or go to the Gmail

website, so that we can get certain packets. Now come back to the Wireshark, stop the

Wireshark interface and here you can see all the packet. So, you can see there are lots of

packets where the protocol field.

So, here we have the protocol field the protocol field is GBSP. So, this GBSP is

something called GIE vision protocol which is used in tumbler kind of application which

currently I am using for recording. So, it is capturing lot lots of such packets GBSP kind

of packet it should also capture certain TCP packet.

(Refer Slide Time: 03:34)

So, here is some TCP packets you can see so here are the TCP packets. Now whenever

you are selecting one of these packets. So, let me choose one packet here.

(Refer Slide Time: 03:50)

So, the protocol it shows us TLS version 1.2 which is the transport layer security

encrypted TLS encrypted packet. So, the Google whenever it sends the packet over the

TCP protocol, it uses TLS to ensure the security at the transport layer.

(Refer Slide Time: 04:11)

Now, inside this packet if you look into this second window, this second window actually

gives you the packet details at the different layers. So, this is a nice way to visualize the 5

layers of the TCP/IP protocol stack. So, here let us start looking into again this top down

approach the way we are following the course.

So, where you can see that you have this SSL packet which is the encrypted data bits that

we have, after that we have these HTTP header. So, in that HTTP header we are

connecting to a proxy just contains the proxy information, because the packets that we

are sending from this machine, it is sent to HTTP proxy server, and from that HTTP

proxy server it is going to Google.

So, the packet which is sending to Google it is inside that secure socket layer that layer

which is the encrypted data. So, you can see that it contains this application data protocol

it says about HTTP over TLS. So, here it gives the application data the TLS version 1.2

the length, and the encrypted application data, so this is the encrypted part of the

application data. So, there are three different TLS record blocks. So, the entire data is

divided into three different TLS blocks and that contains the entire application data. Then

this HTTP extension which contains the proxy information, then we have the

transmission control protocol at the TCP port. So, you can see that the TCP details are

there.

So, here my source port is 8080, the destination TCP port is 54768, the stream index is

something like 1, the single stream the segment lane it contains the TCP sequence

number that we have seen for the transmission control protocol, the next sequence

number, the acknowledgement number, and the header length, certain TCP flags.

So, in the TCP header there were multiple flags. So, those flag bits are here the window

size the receiver advertised window size, and accordingly the calculated window size.

And the checksum field, the urgent pointer, then the TCP option field, and the sequence,

and the acknowledgement field.

(Refer Slide Time: 06:38)

Then you can look into the IP header. The next layer is the IP header inside the IP header

you can see that the source address and the destination address. Now the source address

that I have 172 dot 16 dot 2 dot 30 that is the IP of the proxy address that we have in our

IIT Kharagpur network. And the destination address is 10 dot 146 dot 58 dot 130 that is

the address of this machine.

(Refer Slide Time: 07:07)

So, if you if you just try to see the IP of this machine you can see that say so in the

ethernet address the loopback address well. So, here you can see that the WLAN address

is it is connected to the wireless LAN interface. So, the address is 10 dot 146 dot 50 dot

130 the address of this machine. So, here also the destination address is 10 dot 146 dot

58 dot 130 the address of this machine.

So, the packet has been received from the HTTP proxy that we have IIT, in IIT

Kharagpur to this machine and the different field in the IP header. So the IP header

length the flag bits in the IP header, the fragmentation information. Then the upper layer

protocol, so it is using TCP protocol, then the source destination, this IP layer header

information.

(Refer Slide Time: 08:28)

Then you have this ethernet information. So, the ethernet information you can see from

here and finally, the link layer information.

(Refer Slide Time: 08:34)

So, the data link layer has two sub part the logical link control and the Mac. So, this

frame information that is coming from the Mac and this ethernet information coming

from the LLC. It contains the packet arrival time, the epoch time, the frame length and

different other fields which are there to indicate the link layer information. That way

using Wireshark you can actually look into different type of packets say for example, you

can see that this is a TCP SYN packets. So, it is marked as a SYN. So, if you look into

the TCP header for this packet, I well yeah the TCP header.

(Refer Slide Time: 09:24)

So, if you look into the TCP header for that packet you can see that the SYN bit is set.

So, it is basically a SYN packet to initialize the TCP connection. So, you can see that a

SYN is so here you can see interestingly the TCP three way handshaking mechanism. So,

the SYN packet has been sent with sequence number 0 and certain window size, then

you can see a SYN ACK; then followed by another ack. So, this three way handshaking

is happening here.

So, that way using this Wireshark tool you can actually capture all the packets which is

coming in your machine. And you can analyze them you can see what are the different

packets coming to your machine and how to process those packet look into different

header fields at a different layer of the protocol stack and explore it further ok. So, that is

brief idea about how you can do the packet analysis using Wireshark ok.

(Refer Slide Time: 10:29)

So, next we will look into that how you can emulate a computer network in a single

machine? So, that is the emulator platform which is again is done based tool that we are

going to discuss in little details. So, in computer network the best way to learn a

computer network is experimenting it on the existing network so that is always.

So, if you run your own protocol if you say design a protocol implement it and make a

run on a on your network, so that is the best way to do. But the problem is that if this

kind of existing network it may not be available for everyone. So, to get access to an

existing network is a difficulty.

So, some time it may happen that you have a limited access to the network. For example,

we have certain limited access in IIT Kharagpur network you cannot run anything over

the IIT Kharagpur network. Because it is a public network and if you want to design your

private network or want to set up your private network it is expensive to make a setup of

your private network. So, that is why what we do? You try to emulate a network topology

in a computer.

So, there are multiple simulation platform which has been used historically to understand

the behavior of a computer network. But simulation platform has many limitation

because it is not using the exact protocol stack which is running inside your machine. So,

that is why many of the time a simulated network does not give you an ideal information

about how your protocol can perform in a real environment. But on the other hand the

emulated network has that capacity.

So, in a case of a emulated network the difference from the simulated network is that you

are not simulating in a hypothetical, or a virtual environment rather what you are doing?

You are utilizing the network protocol stack the implementation inside the kernel itself

the actual implementation which is going to run in a real network. And on that

immolated platform you are testing that how the performance of your network is going to

be. So, the advantage is that it is independent of the existing network and it can be set up

as required ok.

(Refer Slide Time: 12:38)

Now, here are the different parts or different components of computer networks in a

physical network. So, you have the routers, you have the switches, you have different

host and the server and you have the link.

(Refer Slide Time: 12:53)

Now, in a virtual domain, or an emulated domain whenever we are emulating it using

this mini net platform. So, we call mini net as a network inside the computer, a emulated

network inside the computer. So, these routers are implemented using called something

called a virtual namespace for legacy network or open v switch for software different

given network.

So, Open vSwitch is a tool chain which provides switch implementation in an open

platform open platform, or open source platform. You have that Open vSwitch

implementation and using Open vSwitch you can emulate a switch using the kernel

protocol stack which is there in your Linux operating system. Then a switch can again be

emulated using a Open vSwitch platform, host can be emulated using a virtual

namespace a namespace is basically instance of the protocol stack which works like a

individual hosts.

So, you have this entire protocol stack implementation inside your computer. Now you

are creating a virtual instance of that protocol stack and emulating it at as an individual

host. So, this entire architecture you can just think of the way we do the operating system

level virtualization. So, I think that you have heard about this kind of virtual machine,

and the tools like virtual box.

So, in a tool like virtual box what we do? We do the operating system level

virtualization. So, you have this virtual box on top of you can have multiple vmswitch

are running, and inside every vm you can run one different operating system. So, one vm

can host a ubuntu operating system, another vm can host a say windows operating

system, a third vm can host a feather operating system. And all this thing can run on top

of a host operating system.

I a similar way here we are emulating the network using this virtual namespace, and a

virtual switch concept where the network protocol stack implementation is there inside

your kernel. And we are creating a virtualized instance of that protocol stack. So,

whenever you are creating constructing a virtual host; that means, you are creating you

are taking a virtual instance of the entire TCP IP protocol stack of the 5 layers and

considering it as a virtual namespace. So, the term namespace actually indicates a virtual

instance of this end to end protocol stack.

So, you are taking a virtual instance of that and considering it as an as an a individual

host. Now if we are going to implement a switch or a router then at the layer three of the

protocol stack you need to run the routing functionalities, or at layer two of the protocol

stack you have to run the switching functionalities, or layer two functionalities, so that

you can implement with the help of this Open vSwitch.

So, the Open vSwitch will adopt the virtual switching functionalities or the routing

functionalities on top of that namespace the protocol stack namespace. And then you can

emulate the links the physical links using virtual links.

(Refer Slide Time: 15:49)

Now, this is a kind of simple computer network in the physical domain you have one

host which is running say a browser like Firefox, it is connected to a network switch or a

router that is again connected to a HTTP server. So, using the browser you can browse

the data from the HTTP server.

(Refer Slide Time: 16:08)

Now, the same thing you can implement inside a single machine. So, here you have your

Linux kernel; in that Linux kernel you have this open vswitch kernel module which runs

the switching functionalities by taking a virtualized instance of that TCP IP protocol

stack and then you have two different namespaces host namespaces. So, these two

different host name paces, again have a virtual instance of these 5 layers of the TCP IP

protocol stack, and they are in the application site you are running a Firefox, then you

have a Linux kernel which has this virtual implementation of the protocol stack and then

the ethernet 0 which is a virtual link which is connected to this Open vSwitch kernel

module.

So, it is connected with this logical switch at the virtual switch and the other host name

space you have HTTP server running at the application and the remaining part of the

protocol stack along with the virtual link through this eth 0 which is being connected. So,

that way the physical network you can implement in a machine using this virtual instance

instances of the network.

(Refer Slide Time: 17:16)

So, now how you can create such kind of topologies in a network in a computer, we can

use the mini net tool I will show you a demo of that mini net tool, but before going to

that just showing you some simple comments inside the mini net tool.

So, this mini net tool you can this is a open source tool, you can install it from the mini

net website. So, from the mini net website you can even get the image under different

kind of operating system or you can also get the source, you can compile it from the

source and install it to your Linux based machine. So, in the mini net command if you

type the command like mn; mn is corresponds to the mini net minus topo single 2 what it

will do? It will create a topology like this; it will have a single instance of the switch and

two different hosts.

So, if you make it mn minus minus topo, single 3, then you have a single switch with

three different hosts. If you make it as mn minus minus topo linear 3, it will create a

linear topology of the three switches and one host will connect with each of the switch.

So, this is the topology corresponds to that.

(Refer Slide Time: 18:27)

And then if you want to create say a complicated topology, so, here what we are doing

that we are creating a topology like this linear 2, 3 and this is a kind of SDN topology

that we are going to implement. In the last lecture we have discussed about this SDN

architecture we have the switches, and the switches are connected to a controller. So, that

thing we are going to emulate here using this SDN mini net networking platform.

So, what we are going to do, we are having this mn minus minus topo; linear 2, 3, linear

2, 3 means you have a linear topology of two switches which are being connected and

three host are connected with every individual switches, and then we have specifying

minus minus controller equal to remote. That means, we are having a controller which is

there in the remote machine and that controller is connected to the switches. Now in that

controller you have to load individual controller software.

So, in the last class we are discussing that there can be multiple such controller platforms

like ryu like that porks like open daylight, like floodlight, there are different kind of

controllers you can pick up your favorite controllers and attach it with this virtual

controller that you are designed. And then with that virtual controller you can actually try

to do the experiments by setting up by writing your code inside the controller, by writing

your network application inside the controller and then running it over this kind of

emulated network.

So, now let us go for a demo of this entire procedure.

(Refer Slide Time: 20:04)

So, what we are going to do is first we.

(Refer Slide Time: 20:09)

So,. So, first we will run mini net instance with we create a topology of a single switch

and three different host. So, let us do it pseudo mn minus minus topo. So, you have to

run it is in the pseudo instances, because it run as a ryu you are going to access the kernel

protocol stack.

So, that is you require the root access, single comma 3 the way I have shown you earlier

like we have a single switch with three different hosts connected to that switch. Then

minus minus mac, minus minus controller remote, minus minus switch ovsk. So, here it

says that I am going to have a controller which is now going to connected with the

switch and those which are of type ovsk switches.

So, I have to give the root password oh sorry I have made a typo here it should be

controller ok. Now you can see here what has happened first whenever it is trying to add

the controller, it was not able to contact the remote controller at the local machine. So,

we are saying that we are going to run the controller in the local machine.

So, the controller normally runs in two different out of the two different port 6653 or

6633. So, it is searching for the controller, but currently we have not executed any

controller. So, it was not able to find the controller and it has added three different host h

1 h 2 and h 3 and added a switches called s 1 and the links are h 1 to s 1, h 2 to s 1 and h

3 to s 1 a kind of star topology. So, three hosts are connected to one switch.

So, it has configured the three hosts, started the controller, but the controller it was not

able to connect and one switch has been started. So, now, you got the mini net console

here, now from that mini net console if you try to say ping something. So, we make the

command as h 1 ping h 2.

So, whenever we write h 1 ping h 2; that means, from the virtual namespace of h 1, the

protocol stack which is there the actual protocol stack which is there from there we are

going to execute the ping command and we are trying to ping the host h 2. So, here if

you try to ping it you can see that it is not getting pinged.

(Refer Slide Time: 23:22)

So, it says that the destination host is unreachable.

(Refer Slide Time: 23:29)

Similarly, if you try to ping from say h 2 ping h 3, none of the machines will get pinged

it says destination host unreachable.

(Refer Slide Time: 23:46)

Now, let us run the controller. So, what will do under this mini net directory, we have we

are going to use the ryu controller.

So, we are going to the directory ryu and starting the controller. So, ovs vsctl. So, this

ovs vsctl command is used to start a controller and attach it with a corresponding ovs

switch set bridge, we are trying to set the controller in the bridge mode and it will be

connected with s 1. So, s 1 is going to work as a bridge mode with which the controller is

getting connected 10 protocols equal to open flow 1 3.

So, we are specifying that we are going to use open flow version 1.3 at my protocol smrl.

So, the password now we are going to start the controller. So, what we have done here

we have with this ovs vsctl command with this s 1 which is working as the bridge mode

with that we have configured t to hit this open flow version 1.3 protocol stack, now we

are going to run the switch run the controller. So, to run the controller we are going to

ryu manager, going to run ryu manager in the verbose mode.

So, that we can see what is going to happen here and the controller program that we are

going to run. So, on the controller you have to run certain applications. So, that

application will take care of configuring your switches that we have learned in the last

class, it will configure the switch and it will install the forwarding rules inside that

switch.

So, here we have written a python script, which is actually a default python script used

inside the ryu controller and that python script actually works like application of a

forwarding manager. It helps you to forward the packet from one machine to another

machine. So, we are going to run that one, it is simple switch with version 13 dot p y. So,

that is the python application which you have written or indeed it was a default

application in ryu; once you install ryu you can get that as well. So, that particular

application we are going to run here ok.

(Refer Slide Time: 26:33)

So, it has executed that one, and after that it has getting connected with the

corresponding switch now, let us try to run it h 1 ping h 2.

(Refer Slide Time: 26:48)

 Now you can see it is getting pinged and when it is getting pinged let us look into few

events which are happening here.

(Refer Slide Time: 27:03)

Here you can see there was some event which has been locked. So, this event you can

see certain packets are coming to the controller and based on that packet, it is

configuring the corresponding switches.

So, the controller events are being logged here.

(Refer Slide Time: 27:23)

And here it is getting pinged and we have an interesting observation here, if you look

into the response time of the switches. So, you can see that the first packet that was sent

it has a longer time. It it has taken a time of 4.84 milli second whereas, the remaining

ping packet it has took around 0.16 millisecond and 0.03 millisecond, 0.02 milliseconds

something like that, but the first one has taken certain more time why that is so?

If you remember in the last class that I have discussed, that how this entire controller

architecture is going to work for the first packet whenever it reaches to the switch, the

switch does not have any information about how to process that packet or how to

forward that packet. So, what the switch has done the switch will send or generate a open

flow event, which will reach to the controller. So, the event we can see in the other tab

the open flow event that have been generated.

So, this open flow events will be generated and it will be sent to the corresponding

switch, and then that particular switch will send that event to the corresponding

controller, the ryu controller application that we are running. So, that particular

application the switching application, it will generate the rules and configure the switch

with that particular rule and then the packet will get forwarded and during that in

between time, the packet will remain inside the buffer of the switch

So, for the initial packet we see a certain longer delay for, but for the remaining packet

that delay shall less.

(Refer Slide Time: 29:01)

Again if I run it, you can see that the delays is comparatively lesser. Only for the first

time it has took that initial longer time. Similarly now in this case if I run it in a different

case.

So, earlier I have done h 1 ping h 2, now say run it from the h 2 host.

(Refer Slide Time: 29:25)

So, if we run the ping from h 2 host to h 3, again you can see that the first packet has

took some longer time to forward the things. So, that way you can actually run this entire

controller and the switches and emulate the topology by using this mini net emulator

network emulator platform.

(Refer Slide Time: 29:44)

Now, briefly and you can see here that all these events have again executed for different

notes. Now let us look into the application that we had written in python. So, I will

quickly show you the application which is there.

(Refer Slide Time: 30:06)

So, inside the app directory you can see that there are multiple applications which are

there. So, you can actually play with these applications which are there and they will

start writing your own application using this python programming. So, simple switch 13

dot py ok.

(Refer Slide Time: 30:30)

So, here what we basically do? A simple switch thirteen class has been defined and

inside that, we are defining different functionalities. The initial the initialized

functionalities the a switch feature handler which handle different features inside the

switch and then the interesting part is this add flow things.

(Refer Slide Time: 30:50)

So, this add flow will add a new rule corresponds to a new flow. So, what it will do. So,

this add flow it will call this packet in handler.

(Refer Slide Time: 31:07)

So, this packet in handler actually handles one open flow packet. So, whenever our

packet in event occurs; that means, a packet is waiting at the switch and you have

received that packet in event at the controller side.

(Refer Slide Time: 31:23)

So, what we are actually doing. So, you can see that we are extracting the port; we are

extracting the packet parameters, the packet equal to packet message the data then the

ethernet header.

(Refer Slide Time: 31:35)

From the ethernet type, we are looking into the type and then we are taking the source

address and the destination address from the ethernet interface. We are looking into the

data part id and then generating the forwarding rule. So, here the forwarding rules are

generated.

So, we are learning the MAC address. So, here we are doing the forwarding. So, the

forwarding is dumped at the MAC address, in the later lecture you will learn how to how

you can use MAC address for do the forwarding. So, these forwarding rules are being

generated.

So, based on that we are generating the output port; so, where the packet will be

forwarded next. And accordingly the action has been defined and then we are installing a

new rule to in the switch.

(Refer Slide Time: 32:25)

So, these new rules or this with this with this add flow command in the data path, the

new rule is being installed inside the switch.

(Refer Slide Time: 32:34)

So, then we are making a packet out event.

So, this packet out event will actually send the information from the controller to the

switch and it will send that message to the data path from the data path. So, that way so,

it has it is own construct you have to learn that what are the different functions or

different classes which are being available in the mini net and accordingly try to learn

this program.

So,. So, I will suggest you to explore this further to explore this code if you are familiar

with the python language, and start a, with playing with this kind of code. And if you are

not familiar with python language, do not worry there are other controller as well.

So, for example, there are this open daylight controller which is written in java, you can

try with those controller as well. So, you can choose your controller which is preferable

to you and start playing with that.

(Refer Slide Time: 33:32)

So, that is something we wanted to discuss in this particular class.

So, hope you got an idea about how to process these entire things and run a SDN

controller in your local machine. So, I will I will suggest you to play with this mini net

emulator platform and the different kind of protocol that you are learning execute it on

top of that.

So, you can even execute a socket programming from this individual host, just like we

have executed the ping application. You can run your socket programming application

and run in tier. So, explore it further. So, hopefully you will get a nice understanding or

nice insight of this network protocol stack so.

Thank you all for attending this class.

