
Computer Networks and Internet Protocol
Prof. Sandip Chakraborty

Department of Computer Science and Engineering
Indian Institute of Technology, Kharagpur

Lecture - 43
Software Defined Networking – I (Basics)

Welcome back to the course on Computer Networks and Internet Protocols. So, till the

last class we have looked into the detailed design of IP routing mechanism and the

structure of IP router. Now we will go to a little advanced topic which we call as the

Software Defined Networking.

So, this concept of software defined networking is an recent and upcoming standard and

all the traditional routers are expected to be replaced by SDN enabled router. So, we will

briefly discuss about what is SDN? What is the utility of SDN? How SDN differs from a

traditional router architecture that we have discussed earlier.

And then we will look into certain topics in SDN that how will can program a router with

the concept of SDN technology. And how we are gradually migrating from a traditional

distributed router architecture to the SDN supported router architecture. So, the concept

of SDN is something like this.

(Refer Slide Time: 01:27)

A software defined networking architecture it is a network framework which involves in

separating a network’s control function from its data forwarding function, and

centralizing its intelligence, and abstracting its underlying architecture from applications

and services. So, that is the kind of formal definition of software defined networking.

Now the broad keywords inside these definitions are as follows, first of all we are trying

to separate out the control functionalities and the data functionalities inside a router.

What is mean by separating out the control functionalities and data functionalities?

So, in the last few lectures we have seen that well inside a router you have two different

levels of abstraction. You have the control plane which is implemented as a part of the

software which implements the routing functionalities and the construction of the routing

table and its management, and we have our data functionalities.

In the data functionalities your task is to forward a packet by looking into the destination

IP filled in the IP header, and making a match with the routing table the local copy of the

routing table inside a interface that is the forwarding information base, and then forward

the packet to the outgoing interface. Now, these control functionalities and the data

functionalities traditionally they are implemented in a single router. Now whenever you

are implementing the control functionalities and the data functionalities in a single router,

then the complexity of the control functionality becomes higher. Why it becomes higher?

Because now you have multiple routers with their control planes and those control planes

need to coordinate with each other to generate the global routing table, or to manage the

global routing table. And, these control need to be performed in a distributed way

because of its architectural limitation at the way we have designed this traditional router

architecture.

And with this distributed control architecture first of all your routing protocol gets

problematic as we have seen that both distance vector and the link state routings have

significant limitation in terms of their scalability, distance vector routing cannot get

scalable because of this count to infinity problem, where as the link state routing protocol

that cannot get scalable. Because of its size of the link state packets or the size of the link

state information that you need to maintain if you implement it over a large network.

So, because of such limitations we have restricted this link state routing and the distance

vector routing within a local internet, or within a subnet. And from network to network

we have this border gateway protocol which implements the policy. Now this may

difficult for the network managers because, if there is a policy change then you need to

update every individual router. And, all the routing protocols in all the routers control

plane they need to get coordinated with each other to make an policy update at the

individual routers, and obviously, in a distributed architecture it will take time.

And because of this time requirement there can be inconsistencies across the routers and

these inconsistencies can get significant in a large network. So, that is why managing a

router, managing a subnet with some say 1000 routers is a very difficult task. And you

are deploying these routers not in a single day gradually you are expanding your network

and you do not know that what was the configuration of the earlier routers and you need

to make a match of the configuration from these two different routers.

Then comes off the compatibility among the vendors, it is not like that all the routers of

an organization they will come from Cisco, or even if they come from Cisco they will

have the same model as you make a gradual deployment that outers may come from

different vendors. The routers may have different models their configuration options may

be different if you just look into the Cisco IOS manual you will see that it is a some 5000

page document. So, the management functionalities are very complex.

And with this distributed architecture, maintaining consistency across the configuration

of the routers at the control planes are different level did that become difficult and that is

why we gradually try to move from a distributed control plane architecture to a

centralized control plane architecture. And, that is the basic motivation behind the design

of a software defined networking concept.

So, let us go to a little details about this SDN abstraction here the idea is that you

separate out these control planes from the routers and make a centralized control plane.

So, you take out the brains from the router. So, this control planes you can say that it

work like a brain of the router because, it makes the decisions and that he came hard

were just making a forwarding processing. So, you are taking this brains out of this

individual routers and putting a centralized, putting the brains in a centralized place

which is your entire route controller.

(Refer Slide Time: 07:19)

So, as you have looked earlier that the control plane and the data plane. The control plane

is the module which takes all the decisions; basically it is an instructor the routing

algorithms implemented in the control plane. And the data plane is the module which

carries out the tasks given by the control plane the forwarding on the packets.

(Refer Slide Time: 07:40)

Now, the traditional networking devices they are proprietary. The vendors they decide

the software and the hardware both the control plane and the data plane and there is no

such standardization that there should be this kind of match. Every vendor apply their

own optimization. And because of that it is very difficult to purchase the hardware from

Cisco, and then take another operating system and load it on a Cisco router. Although,

there are certain routers which can support open source network IOS or router OS.

But they also have their own restrictions in terms of performance and manageability. But

for the commercial routers in general the hardware and the software both comes from the

same vendor and it is difficult for interoperability, managing interoperable.

Interoperability is possible, but managing interoperability among products from different

vendors as the kind of difficulty in a large network.

(Refer Slide Time: 08:47)

So, the idea is to separating out the control plane and the data plane. So, the idea is that

the vendor will only provide the hardware that is the data plane and we decide the

control plane by writing the custom logic that is the software.

So, the control plane will we decided by the application designer, or the network

manager or the network support team whereas, the data plane will only come from the

vendors. So, not now the vendors they will just deliver a dumb switch it just have thee

TCAM, just has the TCAM hardware along with the forwarding engine, the control logic

is not there. We will implement our control logic ourselves.

(Refer Slide Time: 09:30)

So, the vendors will only provide the hardware and we will decide the control plane by

writing custom logic. The advantage is that first of all the features are no longer limited

to what the vendor provides. You can always write your own network application as a

part of the controller.

Or the community development in our open source movement people can come together

and design a new network protocol and implement it on a control plane itself. And you

do not require a vendor support for that and it; obviously, increases the product lifetime.

(Refer Slide Time: 10:13)

So, here is a brief idea about how does SDN work? So, compared to the traditional

network a software defined network has two type of devices. The controller which is the

brain of the network and the switches that is the hardware devices they are kind of dumb

switches that they do not have any logic in built inside them. So, the switches in SDN are

kind of blind switches. So, they do not have any built in features and that needs to be

instructed by the controller. So, the switches so here is an example of an SDN switch

zodiac effects switch which is a tiny SDN switch, it has 4 interfaces and TCAM

hardware.

So, this is the TCAM hardware and this is the microcontroller; microcontroller for the

switch. So, it just comes with this much of hardware and whatever routing logic that

would be there that will be instructed by the controller itself, and the controller can

comes from different open source standard. For SDN we have this protocol called open

flow. Open flow is a open source standard for making controller to switch

communication and based on this open flow standard there are multiple open source

controllers which are available there is controller like Ryu, and many others SDN

controller like the old controller was something called POX which is a Python based

controller then NOX.

So, this kind of controller are there open daylight the I can name a few other controllers.

So, there are difference at open source controller whatever controller you prefer you can

use it in a standard computer. Now this entire brain can be put on a standard computer

you do not require specialized hardware for that because route processor is nothing, but a

general purpose processor. So, that is why you can put this entire control logic on a

single computer.

So, you can install this controller one of the controller Ryu, POX, NOX open daylight

anything whatever your is your personal choice. You can install it on a personal

computer and from that personal computer you can make the things communicate with

each other.

(Refer Slide Time: 12:36)

So, this is the architecture the call we have a controller which is nothing, but computer

general purpose computer that works like the brain of the internet work and then we can

have multiple switches. These switches are the kind of dumb polycystic. Controller

actually decide and teaches the switches how to forward a packet and then you can have

multiple hosts.

Now let us so this is a very simplified architecture I am trying to explain you the basic

concept with this simplified architecture. So, let us look into an example that how the

entire thing works in an SDN environment. So, in a traditional networking environment

you do not have this controller.

So, you only have this switch and the host, and the switch has to center routing logic.

Now here the routing logic is taken out from the switch an it is put on controller. Now

note that you can have multiple switches which are connected to this controller. Indeed

term all the switches in our organization they can be connected to a single controller.

The controller will actually perform this routing logic in a centralized to it that way we

are actually avoiding the problems associated with a distributed routing logic and we are

also reducing the overhead which comes from the distributed routing protocols. And we

are putting this entire information in a controller which will dynamically teach the

switches about how to forward the packet. So, let us look into the example.

(Refer Slide Time: 14:17)

So, you want to forward a packet from h 1 to h 3, your source is h 1 under destination is

h 3. So, the host forwards the packet to switch s 1. Now whenever the packet comes to

switch s 1 initially this switch does not have any information. It just have a TCAM

hardware, and switch fabric, so it does not know how to forward the packet.

So, what the switch does? The switch sent an packet in even to the controller; that means,

the switch informs the controller that I have deceived a packet. With this packet in

message, it sends the packet information the packet metadata to the controller. And then

the controller actually decides that what to do with that packet and return back the

information to the switch in a packet out event. And till that time the packet is buffered at

s 1, buffered at the switch.

(Refer Slide Time: 15:16)

Now, the controller sends to rule to the switch then this rule is installed in that TCAM

hardware of the switch. So, well discuss the open flow protocol in details in the next

class during that time I will show you that how we actually write the rules and how a rule

looks like. And this rule is actually a very simple thing the rule is just kind of match

action pair right. So, a suit rule is nothing, but you have a match data and then action

data.

So, the match data says that say if your destination IP is some 10 dot 2 slash 16 then you

exceed any reaction is say forward, forward to say interface eth0 forward it to interface

eth0, so that can be a simple rule. So, this rule is now generated by the controller. So,

earlier this rule was actually inside the routing table. Now this rule is generated by the

controller and then the controller actually sends this to the switch and it is installed in the

TCAM hardware of the switch.

(Refer Slide Time: 16:39)

Now the switch has this rule; so, once the switch has this ruled in the switch forwards the

packet to extreme. Now the rule is already installed in the TCAM hardware of the

switch.

(Refer Slide Time: 16:45)

So, that is why for the subsequent packet you do not require to communicate with the

controller the communication in the controller is only required for one type. So, you

forward it to s 1 and then send it back to h 3 and that is the rule which is being installed

in s 1.

And for all the subsequent packet there would be a TCAM it and the cache it. So,

whenever there is a cache it you directly forward it to SDN. Now this is this entire h t

and architecture and before going to the SDN architecture let me tell you the power of

SDN. Now with the help of this dynamic configuration you can actually support lots of

new things along with a simple forwarding.

So, now with this match action pair kind of rules you can also implement a firewall. How

you implement a firewall? You can implement the firewall is something like this say if

your destination IP is 172 dot 16 dot 20 slash 24 then you drop the packet that can be a

firewall rule which you can always install inside s 1, inside the switch inside the TCAM

hardware of the switch.

So, that way you can design a white class of rules. So, we will discuss in the next class

the different open flow supported rules which are there in the open flow standard. And

you can actually support a large pool of such rules to implement different kind of

network application at the controller. You can implement the firewall, you can implement

a NAT, you can implement a forwarding gateway, you can implement a packet gateway.

Even you can process because the controller is working at the application level, you can

also process at the level of virtual LAN, or at the level of even at the transport layer. You

can look into the port and based on the port you can decide what to do.

So, for example, if you just want to ensure that you should not send any packet to port

80. So, you can just write a rule like this say if your port is equal to 80, then you drop the

packet well. So, you can also write the rule in this way at the controller side. So, that way

you can implement the wide class of network application at the controller and it is not

limited only to forwarding under routing behavior.

So, ultimately most of the network functionalities you can map it to a forwarding

behavior. So, you are deciding how to forward a packet, or you are deciding whether at

all to forward the packet or not. So, all these things can be handled by a single controller

and that is having a centralized logic because it has a centralized logic. Managing this

entire thing is very easy because, nowadays now you do not require this distributed

configuration of the control plane of individual routers. Just sitting on a single computer

which has a controller software installed, you can implement all these network

applications.

(Refer Slide Time: 20:06)

So, this is the broad SDN architecture at the infrastructure layer you have the

programmable switches, the different programmable switches which are the dumb

switches. But they can be programmed dynamically then you have a network controller

at the control layer. And finally, you are running you can run multiple applications on top

of this network controller you can implement a firewall, you can implement a custom

forwarding engine, you can implement a packet gateway, whatever application you want

to implement on top of this controller.

(Refer Slide Time: 20:42)

So, here is the difference between the traditional network and SDN. So, in case of a

traditional network you have the control plane and the data plane inside every individual

switches. And this control plane they will talk with each other, work in a distributed way

and on top of that you have the network applications which are running. And now

because these network applications say one network application is interacting with this

particular router, another network application is interacting with this router.

So, there can also be consistency problem not the configuration problem, it may happen

that this network application is having a conflict with the another network application,

and deciding that conflict in a distributed architecture is very difficult. But whenever we

are moving to a centralized SDN architecture, or logically centralized architecture. The

data planes are distributed well they just implement a forwarding logic, but the control

plane is centralized and all the application are actually talking with a single control

plane.

Now what you can do this is another power of SDN that you can implement a compiler

kind of software here, or an interpreter or a compiler, or a compiler inside this control

plane which will generate the rules from individual programs. And then it will also check

whether two rules are having a conflicting behavior with each other or not. So, that way

you will be able to identify the conflicting rules or you will be able to also manually

check whether the rule is actually conforming to the network policy which you want to

build inside your network. So, that way this internet work management procedure

becomes simplified.

And it provides you a flexible and cost effective architecture to manage a large scale of

network. So, that is a brief introduction about software defined networking concept; in

the subsequent classes well go to the little details about the software defined networking

concept. We look into the open flow standard in detail. So, the open flow standard is a set

of protocol or a set of messages which help you to communicate between control

controller a centralized controller and a router, or SDN switch in SDN term we do not

call it as a router. Because now the routing functionalities are not implemented inside the

device we just call it as a SDN switch.

So or sometime it is called open switch. So, we just this open flow controller it designed

a set of messages to interact between the controller and a open flow switches, or the SDN

switches. So, you look into the open flow protocol in details as well as we look into

certain aspects of SDN in further details. So,

Thank you all for attending this class.

