
Computer Networks and Internet Protocol
Prof. SandIP Chakraborthy

Department of Computer Science and Engineering
Indian Institute of Technology, Kharagpur

Lecture – 25
Socket Programming – II

So, welcome back to the course on Computer Network and Internet Protocols and in the

last class, we are discussing about socket programming in today’s lecture, we will again

continue with the socket programming in details. So, in the last class we have looked into

the UDP socket, we have looked into the basic of socket programming along with the

UDP server and the UDP client in details that how you can use this concept of soc

datagram under datagram socket to transfer data receive data using UDP protocol. So,

today we look into how you can do the same thing using tcp protocol and we look into

different variants of tcp server.

 (Refer Slide Time: 00:57)

 (Refer Slide Time: 01:11)

https://nptel.ac.in/courses/106105183/24

So, first let us look into the demo of demo about the tcp server and a tcp client. So, first

we look into this tcp server the source of the tcp server in details well, do not get

confused to it end arrow. So, these are c program do not get with this end arrow and this

dot just a formatting we have used for our clarity of writing the code. So, this is your c

code well.

(Refer Slide Time: 01:35)

So, we have this network related header, which are being included followed by the main

function so, in the main function similar to the UDP 1 UDP server that we have

discussed, we are declaring a the server address first server address variable of type

struck sockaddr in and file descriptor to store the socket id that will be created and this is

the syntax that how you should use the code, we are taking the code number from the

command line argument and then we are taking the port number from common line

argument and we are creating the socket by this socket system call.

So, this socket system call similar to the earlier case it will take a finite as, the protocol

family, but the socket type is now SOCK STREAM in state of sock degram. So, and

finally, it is a protocol filed is 0 and as I have asked you earlier that try to explore that

why we mostly use protocol family protocol type as 0.

 (Refer Slide Time: 02:41)

Now if the socket is not created successfully some error message that is getting printed

and after that we are initializing the server address field the ss in server address family

protocol family we are setting it as AF INET, because we are going to use the IPv four

address followed by the server address or server address we are taking it as

INADDR_ANY. So, this INADDR ANY will help us to take the address of the local host

then, we are providing the port number which are have taken from the concept.

So, we have initialized the sever address. So, once you have initialized the server

address, you have to bind it with the socket. So, we are making a bind system call. So,

the bind system call may fail sometime because, if you are going to use the same port

number which is being used by another application, there are other reasons where a bind

call may fail. So if the bind fails, we are having a error message that it is fail to bind that

otherwise, the bind was successful. And the bind is taking the format as we have

discussed earlier the socket file descriptor the address of the server and the size of the

server address variable.

(Refer Slide Time: 03:49)

Now we are making a listen call, the listen call here we are providing the socket and

socket file descriptor and we have specified 5 as the maximum number of connection

that can be backlogged in the listened call. So this concept of backlog connection is that,

the server can handle one client at a time. So, whenever it is taking the connection one

client, during that time multiple client can again try simultaneously, just think of the

scenario of a wave server, where thousands of request are coming to the web server per

second.

So, during that time when the server is busy in executing this say the listen call for one

connection during that time the other connection we get backlog. So, this parameter 5

which specifies how much such connection can get backlogged.

So, after that we similar to the earlier we are making a call to this setsockopt function to

provide this facility of REUSEADDR. So, that we can use the port number for multiple

codes together and after that, we are declaring a received buffer to store the incoming

data in a stream format the buffer length and received length that would indicate how

much data we have received.

And we are declaring this client addr variable that ah stuck sockaddr type of variable to

store the client address and this client length this variable store the address of the client.

(Refer Slide Time: 05:23)

Now, in site alu what we are doing, we are making the accept called at the server site

now tcp is a connection oriented service that is, why you have to make the connect call

from the client side and accept call from the server site to initiate the connection, which

will utilize the three way handshaking of the tcp protocol. So, after we are making the

accept call the accept call, we are passing the parameter as the socket file descriptor, the

address of the client and a length of the client address if there is an error. So, all this

function if there is an error, they return some negative number. So, that is why you can

check the return value if it is less than 0; that means certain error has occurred.

Ok. So, after that once it is accepted the connection, we are printing that we have

received a new connection from the client address, we are specifying the client address

and the client port. So, from that particular client address and the client port a new

connection has been received and after that we are having a loop, where we are receiving

the data from the new socket that has been created.

Now, here also while you are making the accept call in the accept call, it returns new file

descriptor and this new file descriptor will initiate this end to end connection, between

server and the client. So, it returns a new socket descriptor that we will used in the in

sending or the receiving data, which is specific to a pipe or specific to a socket between a

sever and the corresponding client.

So, we make this receive call to receive the data, we will provide this new socket file

descriptor that, you have received after making the accept call and then the received

buffer to store the data the buffer Len and this entire call will return the amount of bytes

that have been received. So, that will returned by the received call and it will store inside

the receiveLen function.

(Refer Slide Time: 07:42)

Now, if receiveLen is equal to equal to 0; that means, you are not receiving any data

from the client. So, you can close this particular connection. Otherwise you get the data

and put in that data that you are receiving at the server side and after that we are actually

whatever data we have received, we are requiring same data to the client by using this

same function ok. So, you have received the data, which is stored in the received buffer

same data is decode back to the to the client side.

(Refer Slide Time: 08:15)

So, this is my code for the sever side now, let us look into the quote at the client side.

(Refer Slide Time: 08:22)

 (Refer Slide Time: 08:32)

 (Refer Slide Time: 08:35)

Ok, at the client side, things are pretty similar on we are declaring the, socket we are

creating a new socket and after creating the new socket, we are getting the here in the

client side, we are getting the server IP or the server host name and the port from the

common line argument. So, we are using that common line argument to create the server

address.

(Refer Slide Time: 09:03)

So, we have declared the server address as a variable as a struct sockaddr in variable. So,

inside that we are putting the server address. So, we are getting the server IP. So, get host

by name this particular function returned a host IP from the host name. So, we are getting

that and then we are putting that server address in this severAddr variable. So, we are

initializing the serverAddr variable with all zero’s that is to initialization that the sever

address family that is AF INET to use the IPv 4 address then this h addr and this

particular field we are using to provide the corresponding server address and the port

number.

Now, you are making a connect call to initiate the connection at the client side. So, the

connect call it sends this socket file descriptor along with the sever address that we have

seen earlier.

(Refer Slide Time: 10:14)

So, it initializes the connection to the connection to the server using the tcp three way

handshaking procedure. Now, after that after the connect system call has made, you have

initiated the connection to the server then, you make the call to the send function, the

send function to send the data. So, we are creating a message called hello dear this

particular message, we are sending to the server and as you have seen in the server code

that the server will actually go back that particular thing to the client.

So, after you are sending that you are receiving the message. So, we are declaring a

buffer as a character array, we will get the data in the form of a character array or a

string. So, we are declaring that buffer for that and after that we are making a received

call, this received call over that socket file descriptor that will get the data from the client

side.

So from the server side so as you have seen in the server code, the server will actually go

back the data that you are sending so, here you are sending this hello dear function, same

hello dear function will be quote back. So, you will receive that data and after receiving

that data you print that particular data at the concept. So, that is the code for the client

side.

Now, let us compile and run this two things. So, first let us compile tcp server and

compile tcp client. So, first we will run the server. So, we need to specify the port

address. So, we are giving port address as 2 4 4 4, those sever will now the server is

learning there. So, once the server is learning there from the client side, we can give so

the server is running in my machine.

So, I am giving the server host name as local host and the corresponding server port that,

we have used here 2 4 4 4. So, it has received the message and at the server side you can

see that, it has received a new connection from the local machine the IP is 127 dot 0 dot

0 dot 1 and a port of 47676. So, it has received this hello dear message, it has ecode it

back and the client has received that message.

So, if you again run the client, again it has received the hello message and you can see

that it has received another connection at a different port 47678.

So, if you run it again, you see that it is again using a different port 47680. So, the same

thing as we have seen for the UDP server case that, the server is announcing itself to a

well known port, but the client need not to do it. So, the client is actually using some

random port to initiate the connection from the client side, that particular code value we

can see here.

Now, this is a kind of tcp server and a tcp client implementation, where in the tcp server

implementation, we call it a kind of iterative server why we call it a iterative sever?

Because if you look into the code, let me open the code again.

(Refer Slide Time: 14:06)

So, here you will see that this connections. So, here we are making a while loop and

inside this while loop, we are accepting the connection.

So, how this entire thing will work if multiple client equation are coming simultaneously

then, one client will be taken that that connection will be taken that will get executed.

Then the next client will be taken, that will get executed then, the third client will be

taken that, will get executed and that way this entire thing will go on. So, that is why we

call this kind of server implementation as an iterative server implementation, where the

client requests are executed one by one.

So, now we will see that we. So, one thing is that this kind of iterative server

implementation is not very useful, when you are trying to design a server like a web

server while you can get thousands of request per second. Now if that is the case, then

you have to handle the client request in parallel, otherwise the sever will not scale up. So,

we will now see that how you can actually implement a parallel server using this help of

socket programming as well as some concept of your operating system level

programming and your op operating system concept of multiple processes.

 (Refer Slide Time: 15:27)

So, if you do not have a understanding of this operating system concept of processes.

(Refer Slide Time: 15:44)

I will suggest you to look into this process concept in operating system and look into it in

details. So, we will use this concept of process in the operating system to look into this

implementation of concurrent servers at the parallel servers. So, as we have looked

earlier that you are creating multiple such connections.

(Refer Slide Time: 15:50)

 (Refer Slide Time: 15:56)

 (Refer Slide Time: 15:59)

We have already looked this socket programming framework or the api s. Now, the

concept of concurrent sever is something like this where multiple clients are trying to

connect to the server simultaneously.

 (Refer Slide Time: 16:14)

Now, if multiple clients are trying to connect to the server simultaneously, then how will

you handle that thing. So, one ways to handle it is using the iterative server, but as we

have seen that the iterative server may not be very useful. So, we implement the parallel

server using this concept of multiple processes in operating system.

So the idea is something like this you have a server process, which is having the parent

socket then, you can make a fork system call. So, in operative system, this fork system

call create such i process. So, what you can do that once, you are accepting a connection

then you can make this fork system call to create a child process, which will actually

handle the data transmission and data reception from that particular child connection.

If you are not doing that, if you are doing it in the earlier way that we are doing inside

the while loop in the form of iterative server, then the time until a particular server is

keep on sending and receiving data, it is not closing the connection up to that point the

connection will remain blocked. So, the server will not be able to handle the second

connection until the first connection is complete.

So, that is why the idea is that, whenever a new connection is coming, you make a fork

system call and after making a fork system call have a child process, that child process

that is the part of the server process, but that will create a child socket it will. So, we

have seen that after you are making an accept call at the server site, it returns a new

socket identify, which is used to send or receive data to the client.

So, you pass that particular new socket file descriptor to the child socket, which will

handle data transmission and reception in parallel. So, the broad idea here is that you get

all the connections one after another, but do not wait for the send and a receive

functionality of our individual connections and keep other connections in the waiting

queue. So, you create a child process and that child process will or we call it as a child

socket, that will handle the send and a receive data functionalities of individual client

request that you are getting.

(Refer Slide Time: 18:32)

So, that was our implementation of the iterative server that we have done, we have a

while loop, inside the while loop you are making a accept call then, you have the send

and receive and it is inefficient because until you are complete that send and a receive

functionalities, you will not be able to come out of that and get or make the accept call

again to accept the new incoming connection.

(Refer Slide Time: 18:56)

So, if you look into that how iterative server works that the listen call it sets a flag that,

the socket is in the listening state and set the maximum number of backlog connections

that you have seen earlier then, the accept call it blocks a receiving socket, until a new

connection comes in the connection tube and it is accepted. So, this accept call is a

blocking call. So, the system will keep on waiting here until, you are making a connect

call from the client side. So it is a blocking call.

Now, once this new connection is accepted, then the new socket file descriptor say, the

connection ft it is written, which is used to read and write data or to send and receive

data to the connective socket. Now all other connection, which comes in this duration are

backlogged in the connection queue, because the process is busy inside this while loop to

send and receive data. So, once the handling of this current connection socket is done

current connected socket is done, then the next accept call they accept the next incoming

connections from the connection tube if there is any or blocks the receiving socket until

the next connection comes.

So, once the execution of this while loop complete, then only you are connect coming in

here and accepting the next connection. So, everything is actually blocked on the send

and a received call that you have there at the this particular while block.

(Refer Slide Time: 20:30)

Now, we extend this iterative sever to a concurrent server. So, our idea is that the parallel

processing of each incoming socket so, that the accept call is executed more frequently.

So, what we do here? Here you see that after we are making this accept call, which is

returning the new socket file descriptor then, we have successfully accepted a client

connection then we making a fork system call. So, this fork system call at the parent

process, it returns the idea of the child process and at the child process it returns 0.

So, whenever you are making this fork system call and if the fork system call is returning

0; that means, you are inside the child process. Now this child process, what it does? It

closes the original socket the server socket and it will use this new socket d that you got

to send and receive data. So, you close the old socket since all communication will be

through the new socket and then you initialize the buffer copy the message to it send or

do the receipt whatever you want to do.

Now, what will happen here that whatever is there inside the fork system call, inside this

fork block in this e block that will executed get executed in parallel. So, in the parent

process the parent process will not so for the parent process, this will receive return falls,

because parent in the n plus is fork returns the idea of the child process and in the child

process fork returns 0.

So, in the parent process you will return back and the parent process will again come

here and make the next accept call. So, the parent process is now, do not need to wait for

this send and receive functionalities, which will be handled by a child process.

 (Refer Slide Time: 22:38)

Now, let us look into the demo of this one. So, here we do not make any change in the

client implementation. The client implementation remains as it was earlier, we will only

make change at the server implementation. So, at the server implementation, so the

change that, we have made the entire code is similar if you look into that we are

declaring this server address, followed by a socket call then initializing the addresses at

the server address field, making a bind call, making a listen call to broadcast the or not to

actually broadcast this may not be a correct term to announce the quote, where the sever

is actually listening and after that making that sets of opt call as earlier and then inside

this while loop, where you are accepting accepting the connection we are accepting

accepting a new connection and it is going to this child fd we are creating a new file

descriptor.

After that you see we are making a fork call. So, you look into this statement in for

return equal to fork. So, we are making a fork call which will create a child process, now

I will suggest you to look into this operating system concept in details, we do not have

scope to discuss that, the idea here is that whenever you are making a fork call this entire

code will be copied to the child process as well. So, the child process what it will do? In

the child process, the fork call will written a 0 and in the parent process the fork call will

return the idea of the child process.

So, if you make a if loop with this return value if the return value is 0; that means, you

are inside the child process.

(Refer Slide Time: 24:32)

So, inside the child process this part of the code will get executed. Now you see this the

second while loop that we had which actually deals with sending and a receiving data, it

is inside only the child process. So, it is inside this e block here we are making this

received call and a send call.

And we are having that hand blink in parallel at the sever side. So, in the server side this

particular e block will not get executed, because in the server in the parent side, parent

socket this will not get executed, because the parent socket will return the ID of the

child. So, it will be not equal to 0.

So, this part will only execute at the child process. So the child process is now dealing

with sending and receiving of the data, but the parent process can come out of that the

parent process is not getting blocked in this second while loop, it can directly come out

and accept the next connection.

(Refer Slide Time: 25:48)

Now net let us run it. So let us first compile it minus o we name it as forkserver and

running the forkserver here we have to give the fork.

Now this distance say, if the port has 2 5 5 5. So, the my server is running and the client

is the same tcp client that we used earlier. So, let us initiate the connection from here

another connection say from another task.

(Refer Slide Time: 26:33)

.

So, I am not doing much tasks.

(Refer Slide Time: 26:51)

So, we will possibly not get a feel of this parallel execution, but what is happening here.

A new child process gets created and it handles this individual request that we are

sending here.

So, you see that we have made some client execution here in this tab and as well as in the

another tab and correspond to that, you are getting the connections at different port and

they are getting executed in parallel. Now this handling is done by a child process that

are then the original parent process.

(Refer Slide Time: 27:28)

Ok now, we have another interesting thing to discuss. So, ok.

(Refer Slide Time: 27:33)

 (Refer Slide Time: 27:38)

 (Refer Slide Time: 27:44)

So, what we have seen till now, that we can do a kind of server implementation.

Concurrent server implementation, now think of a application something like that a kind

of peer to peer chat application. So, multiple people they want to send or receive

messages to each other.

(Refer Slide Time: 27:59)

Now in this particular case, what may happen that we do not have any central server to

control the chat message delivery, every user runs it is own chat server; that means, it

runs the TCP server for incoming come incoming connections and messages, now in

UNIX, it maintains every connection as a file descriptor that we have already seen.

Now, at that time in a chat server you have a typical requirement that you need to also

read data from standard input. So, you need to type something. So, when you are

receiving a message during that time say, you are typing something. Now whenever you

are typing something that standard input it is again a file descriptor. So in UNIX,

everything is a file a socket is represented by a file descriptor and at the same time the

input from the keyboard that is also represented as an file descriptor by this STDIN file

descriptor.

Now in that case, the question come how will you handle it? Because your data is

coming from multiple places, you are getting data from the socket as well as you are

entering data from the keyboard, how you actually switch between this multiple thing,

where this message communication is asynchronous. So, you can receive a message

while you are doing the typing.

(Refer Slide Time: 29:16)

So for that we use this concept at the select system call, which is again an operating

system level system call.

So the select system call, it selects from multiple file descriptor, which is a concurrent

way to handle multiple file descriptor simultaneously even from a single process are

failed. So, you can get the data from the socket, which is one of the file descriptor as well

as the keyboard file descriptor simultaneously.

Now, what we have seen that, what happens in an iterative server implementation that we

have done earlier that the accept call is blocked until you have completed the read and

the write calls. Now what if you do multiple read and write activates after accepting an

incoming connection, that the other connections are blocked and waiting for the

connection queue, they may get starved. Now select is the way to break this blocking.

So, one way to break the blocking is using this parallel implementation another way to

do that thing is to use the select system call. The advantage with this select system call is

that, you do not need to create multiple child processes, now no you do not need to worry

about the zombies. So, child processes has always a problem that if you are if sometime

the parent process get killed or the parent process stops, then the child process become

zombie. So, with the select system call you do not need to worry about this zombie. So,

you can possibly manage resources more efficiently.

So, this selects system call it is nothing, but a multiplexors.

(Refer Slide Time: 30:45)

So, what happens that you have multiple file descriptors, you have certain signals and the

time out and out of this multiple file descriptor, it selects one of the file descriptor. So, it

finds out that among this file descriptor which one is currently active and it select that

particular file descriptor.

(Refer Slide Time: 31:02)

So, here is the format of the select system call, in the select system call you are providing

the number of file descriptor, it is the highest number of file descriptor it is the highest

number of file descriptor in any of the three sets plus 1, we have three different sets of

file descriptor, the read file descriptor to read something as an input, the right file

descriptor to write something at the output and except file descriptor to handle the

exceptions.

So, this file descriptors are a kind of structure called fd set and we have a timeout value.

So, the timeout value is that if you are not getting anything from this file descriptor for

this timeout value. So, it will come out of the things.

So, it is actually providing you a synchronous I O multiplexing over asynchronous input.

So, as we have mentioned earlier that your input can be asynchronous, you can get a

message over the socket while you are doing the typing, but it provides you a

multiplexing to select either the keyboard or the socket at one time distance.

(Refer Slide Time: 32:09)

So, you have three different file descriptor that each file descriptor will be watch to see if

characters become available for reading, the write file descriptor will be watched to see if

the spaces available for write and the exceptional file descriptor will be watched for

exceptional condition.

(Refer Slide Time: 32:23)

Now we have a timeout value, the interval that select should block waiting for a file

descriptor to become ready, now the select call remain block either the file descriptor

becomes ready or the call is interrupted by a signal handler or a timeout expires. So, in

any of the cases it comes out of the select. So, whenever one of the file descriptor

becomes ready it comes out of the select call, if that particular call is interrupted by some

other signals or the timeout happens. So, this is the procedure to set the timeout you

provide the value in the form of second and microseconds.

(Refer Slide Time: 32:59)

Now, how do you pass the file descriptor to select? So for that what we do, we first

initialize the file descriptor set fd set, which is a bitmap of fix size with this fd 0, then we

make the call to fd set. So, if this fd set selects a file descriptor say, my socket that I have

defined and the corresponding the file descriptor, which where the socket is getting

added. So, this particular bit corresponds to this socket file descriptor that will get set;

that means, some data is available there.

(Refer Slide Time: 33:42)

Ok then you make the select call so, how select call? So, it looks over all the file

descriptor for every file descriptor it calls the file descriptor poll method. So, this poll

method is to check that whether something is available to or some event is waiting on

that file descriptor. So, it will add the caller to that file descriptor wait queue and return,

which events currently apply to that file descriptor whether it is file descriptor is

readable.

If it is a read file descriptor whether it is writable, if it is a write file descriptor or some

exception has happened. Now if any of the file descriptor matches the condition that if

there was looking for read write or exception, then the select will simply written

immediately, after updating the appropriate file descriptor set that the user passed and if

not the select will go to sleep for the timeout value once, the timeout occurs it will come

out of that select call.

 (Refer Slide Time: 34:43)

And if some other events happen within that timeout event, it will made this FD set and

come out of that. And during that interval if an interesting event happens to any of the

file descriptor that select is waiting on that file descriptor will notify it is wait queue. So,

this will cause that thread sleeping inside the select wakeup and it will repeat the above

loop and see which of the file descriptor are now ready to be returned to the user.

Now, the return value of the select we have three values if this minus 1 means some error

has encountered. 0 means that the timeout has happened and greater than 0 means, that

that the number of sockets that has the event pending like read write or exception. So, for

how many sockets that event is pending, whether you are going to read or write or

having certain exception.

(Refer Slide Time: 35:23)

So, after select returns you can use the function called FD set to test, whether a file

descriptor is a part of that set. So, you can check whether a file descriptor has been set or

not if the file descriptor has sat set; that means, you have something to read, if it is a read

file descriptor or you have something to write if it is a write file descriptor.

(Refer Slide Time: 35:55)

 So, let us look into a quote which uses this select call. We will use the same tcp server

implementation with this select.

 (Refer Slide Time: 36:18)

So, the base part of the code is same as earlier we are declaring the server address, the

bind call, the listen call at the server side the sets of opt call and after that we are

declaring the file descriptor. So, here we are declaring that we can have a maximum of

16 different file descriptor and this fd len returns, that how many are how many such file

descriptor are currently set or currently active.

So, we are declaring the set of file descriptor and the maximum file descriptor which is

equal to the current socket file descriptor. Now inside this while loop, we will first

initialize the file descriptor, we are here only going to use the read file descriptor because

we are going to read data from the socket and we are setting a go through this fd set call,

we are setting the read file descriptor corresponds to the socket that we have defined or

the socket where the server is actually listening.

Now, we are looping over the available file descriptor. So, here the idea is that whenever

we are getting a new connection, we are adding it a inside the file descriptor inside that

file descriptor set.

(Refer Slide Time: 37:25)

After that we are making a select call. So, as we have seen earlier that there we are not

giving any timeout value, because we are not giving any timeout value. So, it will keep

on waiting for infinite duration, whenever some event will occur then only it will come

out. So, we are initializing with this read file descriptors.

So whenever a new connection will come, it will come to this read file descriptor

through this loop and then it will keep on waiting here, when some event will occur that

old function will get triggered and that old function will return, whether certain event is

there in the read file descriptors certain event means, whether that particular socket is

ready to read the data.

And after that if select returns; that means, some socket is ready for reading the data then

you check using fd set, whether that particular socket is ready to read the data if that

socket is ready to read the data then, you make a accept call accept call to accept that

particular connection ah; that means, some connection is waiting you will accept that

connection and after doing that, the way we are closing the child file descriptor and then

add that particular thing to that file descriptor loop.

(Refer Slide Time: 38:52)

Then in this fd set you loop over all the file descriptor that you have been added.

(Refer Slide Time: 38:59)

So, here earlier what we are doing, that whenever some new connection is coming using

that select call we are checking that some new connection has arrived. So, if that is a new

connection, we add that new connection to the set of file descriptor that we have

otherwise some file descriptor from the existing file descriptor is ready to use.

So, what we do that we check we look over the available file descriptors that we have

and the file descriptor that is currently ready on top of that we make the receive call and

get the data and then return back the data there.

(Refer Slide Time: 39:36)

So, if that received len is equal to equal to 0; that means, you are not receiving any data.

So, you close that file descriptor and clear it from your file descriptor set.

(Refer Slide Time: 39:48)

So, that is this entire idea and after that you save the data in our normal procedure. So,

the idea is that whenever you are getting a new connection, we are adding that new

connection in the set of file descriptors and then we are looping over that file descriptor

to find out, which one have certain data and if someone has certain data, we are sending

back that data.

Now, let us run this code first compile it, again we are going to use the same client

implementation that we have, the client implementation we are not making any change.

So, now, my server runs over select and giving a code 2 6 6 6, it is running from the

client side.

(Refer Slide Time: 40:51)

You send the data, you send something it has received that, then once the task is done it

has closed that particular connection.

Again you can execute it you see it is from a again a different port, the same thing we are

keep on observing it has received the data decode it back to the client and closing that

connection that particular connection. And well one thing just I wanted to show that if

you try to connect to a port, where the server is not running. So, the server is now

running at 4 2 6 6 6, now if you try to connect it, it will get a connection receives

message from the connect call, because none of the server is currently running and the

port 2 5 5 5.

So, this is all about our discussion on tcp server, I was quite fast in describing the things

with the assumption that you have a basic knowledge of C programming and operating

system, we will share all the codes with you and I will suggest you to browse the code

and look into the tutorials that we have shared.

And if you have any doubt or anything feel free to post the questions in the forum. So,

with this particular socket programming, you can develop your own applications you can

even implement the chat server application that we are talking about. So, I will suggest

you to look into that and implement multiple such applications on your own with the

help of this different variance of socket programming.

So, thank you all for attending this class; from the next class onwards, we will go for

again the theoretical aspects of the tcp IP protocol stack so.

Thank you all for attending this class.

