
Computer Networks and Internet Protocol
Prof. Sandip Chakraborthy

Department of Computer Science and Engineering.
Indian Institute of Technology, Kharagpur

Lecture -21
Transmission Control Protocol - III (Flow Control)

Welcome back to the course on Computer Network and Internet Protocol. So, in the last

class, we have looked into the details of TCP connection establishment.

(Refer Slide Time: 00:25)

Now in this particular class, we look into the further details of PCP; the flow control

algorithm, which is used by TCP to manage the rates of sender rates at sender’s eye. And

the different timers associated to it this flow control algorithm and how you set a proper

value of those timers.

https://nptel.ac.in/courses/106105183/24


(Refer Slide Time: 00:48)

Well  starting  with  the  flow control  algorithm.  So,  TCP uses  a  sliding  window flow

control algorithm with this go back in principle go back in ARQ principle.  Where, if

there is a time out, then you retransmit all the data which is there, inside your sender

window.

So, the idea is something like this in a very simplified notion, that you say start to its

subsequent number 0. So, remember that 0 is not the initial sequence number rather here

just for explanation we are utilizing this sequence number as 0. But ideally it will start

from the initial sequence number that has been established during the hand shaking phase

of the connection establishment.

So, here the sequence number is like, if it is sequence number so, the initial sequence

which is being established for last the sequence number that we are talking about here.

So, just for simplicity of explanation we are starting with sequence number 0. So, let us

start with sequence number 0 and at this stage the application does a 2 kB write at the

transport layer buffer. 

When the application does a 2 kB write a the transport layer buffer, so, you send 2 kB of

data and you are sending a 2 kB of data with sequence number 0. So, initially this is the

receiver buffer. So, the receiver buffer can hold up to 4 kB of data. So, once you are

getting that so, the receiver buffer it says you that well; it has to receive 2 kB of data. So,

it has only 2 kB of data which it can accept. So, it sends back with an acknowledgement



number of 2048 2 kB is equivalent to 2048 bytes so, because we are using byte sequence

number. So, it sends an acknowledgement to it 2048 and window site has 2048 so, it can

hold 2 kB of more data.

So,  at  this  stage,  that  then  again  application  does  a  2  kB  upright.  So,  when  the

application does a 2 kB upright you are sending 2 kB of data further data along with the

sequence number starting from 2048. So, it is received by the receiver. So once it is

received by the receiver. So, here because you have already sent 2 kB of data and the

earlier advertise to window size was 2048.

So, the sender is blocked from this point, because the sender has already utilized the

entire buffer space that the receiver can hold, the sender cannot send anymore data. So,

the same that is blocked at this stage so, the receiver buffer becomes full after receiving

this 2 kB of data. So, the receiver sends an acknowledgement saying that it has received

up to 4096 bytes and the window size is 0. So, it is not able to receive any more data so,

the same that is blocked at this point.

Now,  at  this  stage  the  application  reads  2  kB  of  data  from  the  buffer.  Once  the

application reads 2 kB of data from the buffer, so, it has this it has read this fast 2 kB. So,

again this fast 2 kB becomes full. So, when the fast 2 kB becomes full, the receiver sends

an again an acknowledgement that well the acknowledgement number was 4096 the 1

which was there earlier, but the window size now changes from 0 to 2048. So, it can get

2 kB of more data.

So, once it the sender receivers back sender comes out of the blocking stage and once the

sender is coming out of the blocking stage. So, the sender may send up to 2 kB of more

data. So, at this stage say the sender is sending 1 kB of data with sequence number 4096.

So, that 1 kB is received by the receiver it put it in the buffer and it has 1 kB of free. So,

if the receiver wants to send an acknowledgement, in that acknowledgement number it

will use the sit acknowledgement number as 4096 plus 1024 that it has received.

And the sequence and a this window size has window size has 1 kB so, window size at

1024 So, that acknowledgement it will send back to the sender.

So, that way the entire procedure goes on and whenever sender is sending some data that

at this stage the sender this has send some data of 2 kB of data. Then in the sender buffer



that  2  kB  of  data  is  still  there  until  it  receives  10  acknowledgement.  If  this

acknowledgement is lost, then based on that go back in principle it will retransmit this

entire 2 kB of data which was there in the sender buffer ok.

(Refer Slide Time: 05:17)

So, the algorithm is pretty simple considering this sliding window protocol we go back in

principle.  But  there are  certain  tricks  in  it.  Let  us look into those tricks.  First  of all

consider an application called telnet, I am not sure how many of you have used telnet.

So, telnet is an application to make a remote connection to a server. So, with this telnet

application you can make a remote server remote connection to a server and then execute

the comments on top of that.

So,  whenever  you are  making  this  remote  connection  to  a  server  and executing  the

comments on that, say you have just written l s the liners comment l s to listing all the

directives which are there in the current folder. So, that l s command need to be send to

the server site over the network because, that is remote connection using telnet that you

have done.

So, this telnet connection it reacts on every such keystroke, in the worst case that it may

happen that whenever a character arrives at the sending TCP entity. TCP it creates a 21

byte of TCP segment,  where 20 byte is there in the header and 1 byte of data.  TCP

segment header is 20 byte of long, but telnet is sending the data to the server byte by



byte. So, telnet application at the client side it has just received 1 byte of data and that 1

byte of data it is trying to send with the help of a TCP segment.

So, in that TCP segment what will happen, that the TCP segment side will contain 20

byte of the header and only 1 byte of data. So, you can just think of that what is the

amount of overwrite you have. So, with that 21 byte of packet or data going to 1 byte of

segment, you are sending only 1 byte of data. And for this segment another ACK and

window update is sent when the application reads that 1 byte.

So, the application reads that 1 byte and application sends back an acknowledgement.

So, these results in a huge wastage of bandwidth, just you are not sending any important

data to the server side rather you are sending very small amount of data and the huge

amount of resources utilized because of the headers.

(Refer Slide Time: 07:28)

So, to solve this problem, we use the concept called delayed acknowledgement. So, in

case of delayed acknowledgement, you delay the acknowledgement and window updates

for up to some duration 500 millisecond in the hope of receiving few more data packets

within that interval. So, it says that well whenever you are getting a character from the

telnet application, you do not send it immediately. Rather you wait for certain amount of

duration that is the 500 millisecond by default in TCP. And your hope is that by that time

you may get  some more data  and you will  be able  to  send a  packet  where with 20

kilobyte of sorry 20 byte of header you will have more than 1 byte of data.



However, in this case, the sender can still send multiple short data segments because, if

the sender wants. So, it is just like that whenever you are sending the acknowledgement

to the sender, you are you are sending delaying the acknowledgement.

You are delaying the acknowledgement; that means; you are not sending any immediate

acknowledgement.  And  a  sender  to  remember  that,  a  sender  unless  it  gets  an

acknowledgement with the available buffer space, the sender will not send anymore of

data. So, the receiver just keep on waiting that, whenever it will get sufficient data from

the sender it will have sufficient space at the receiver, that then only it will send back that

acknowledgement  to  the  to  the  sender.  So,  the  receiver  will  not  send  immediate

acknowledgement to the sender to prevent the sender to send further data to the receiver.

(Refer Slide Time: 09:01)

Well now, we have another algorithm. So, in the earlier case what we have seen that well

with the delayed acknowledgement, you are expecting that unless you are sending an

acknowledgement to the sender, the sender will not send any further data. But sender is

not restricted to that sender is that whenever it will get data from the telnet application it

will immediately send the data.

Now, to prevent sender for sending this kind of small packets or small segments, we use

the concept of Nagle’s algorithm. What is this? The Nagle’s algorithm tells that, when

the data come into the sender in small pieces just send the first piece and buffer all the

rest until the first piece of acknowledgement. So, it is just like that, you have received a



small data segment or single bytes you have received byte A, you send that byte A from

the sender say this is the sender and this is your receiver.

And you keep on buffering all  the subsequent characters A B C D until  you get the

acknowledgement from the sender. So, the hope here is that whenever you are sending

some short packet in the internet, you are not sending multiple short packets one of after

another. That means, you are not sending a packet A packet B B packet C like segment A

segment B segment C over the network rather only one short packet will be outstanding

in the network at any given instance of time.

So,  that  way  by  the  time  you  will  get  the  acknowledgement  for  this  packet  your

expectation is that, you will get multiple other characters in the sender buffer. Whenever

you are getting multiple other buffer characters in the sender buffer, you can combine

them together construct a single segment and send it over the network.

(Refer Slide Time: 10:57)

The question comes here that we want to use Nagle’s algorithm all the time? Because

Nagle Nagle’s algorithm intentionally increasing the delay in transfer. So, if you are just

using telnets  application  and applying Nagle’s algorithm,  your  response  time for  the

application  will  be  slow.  Because  although  you  are  tying  something  that  TCP  is

preventing  that  single  byte  to  reach  at  the  server  site  unless  it  is  getting  an

acknowledgement for the previous short packet.



And that is why do not want to use Nagle’s algorithm for less sensitive application. And

there is another interesting observation here that, if you implement Nagle’s algorithm and

delayed  acknowledgement  altogether,  what  may  happen?  That  the  in  the  Nagle’s

algorithm the sender is waiting for the acknowledgement. The sender has sent one small

packet or a small segment and the sender is waiting for the acknowledgement, but the

receiver  is  delaying  that  acknowledgement.  Now  if  the  receiver  is  delaying  the

acknowledgement and the sender is waiting for that acknowledgement. So, the sender

may go to starvation and you may have a significant amount or considerable amount of

delay  in  getting  the  response  from  the  application.  So,  that  is  why  if  you  are

implementing Nagle’s algorithm and delay the acknowledgement altogether it may result

in  a  scenario,  where  you  may  experiences  low  response  time  from  the  application

because of the starvation.

So,  in  broad  sense,  the  delayed  acknowledgement  what  you  are  doing?  You  are

presenting  the receiver  to sending small  window updates.  And you are delaying this

acknowledgement  at  the  receiver  side  with  the  expectation  that  the  sender  will

accumulate some more data at the sender buffer. And it will be able to send the large

segment rather than a small segment.

Whereas, in case of Nagle’s algorithm you are just waiting for the acknowledgement of a

small segment with the expectation that by that time the application will write few more

data to the sender buffer and these two together can cost a starvation. So, that is why we

do not want to implement delayed acknowledgement and Nagle’s algorithm altogether.



(Refer Slide Time: 13:14)

So, one possible solution comes from, another problem in this window update message,

which we will call as the silly window syndrome. So, let us see that what is silly window

syndrome? So, it is like that data are passed to the sending TCP entity in large block, but

an interactive application under receiver side reads data only one byte at a time. So, it is

just like that, if you look into the receiver side, the receiver this is the receiver buffer say,

this is the receiver buffer.

So, the sending application is sending data at a rate of 10 mbps say, the sender has lots of

data to send, but you are running some kind of interactive application at the receiver side.

So, it is receiving data at a very slow rate like; at a rate of 1 kB at a time or 1 byte at a

time the example that is given here at 1 byte at a time.

Now, if it happens, so, this is the kind of problem. Initially, say the receiver buffer is full

when the  receiver  buffer  is  full  you are  sending  an  acknowledgement  to  the  sender

saying that the acknowledgement the corresponding acknowledgement number followed

by the window value as 0. So, the sender is blocked here, now the application needs 1

byte of data. The moment application needs 1 byte of data; you have a free space here in

the  buffer. Now say, the receiver  is  sending another  acknowledgement  to  the  sender

saying that the window size is 1.

So, if it sends this window size small window size advertisement to the sender what the

sender will do? Sender will send only 1 byte of data. And once it sends 1 byte of data



with that 1 byte of data again the receiver buffer becomes full. So, this becomes in a loop

and because of this window update message of 1 byte, the sender is tempted to send 1

byte of segment with every window update message. So, this  again creates the same

problem that we were discussing earlier that you are sending multiple small segments

one after another.

And  we  do  not  want  to  send  those  multiple  small  segments,  because  it  has  such

significant  overhead  from  the  network  prospective.  It  conceives  a  huge  amount  of

bandwidth without transferring any meaningful data to the receiver intake. 

(Refer Slide Time: 15:43)

So, to solve this problem, we have a solution which is proposed by Clark, we call it as a

Clark solution. So, the Clark solution says that do not send window update for 1 byte,

you wait for sufficient space is available at the receiver buffer. Once some sufficient

space is available at the receiver buffer then only you send the window update message.

Now, the question comes that what is the definition of the sufficient space. That depends

on the TCP implementation that if you are using some buffer space, then you use certain

percentage  of  the  buffer  space.  If  that  is  become  available  then  only  you  send  the

window update message to the sender.



(Refer Slide Time: 16:23)

Well,  here the interesting  fact  is  that  to hand glass handle the short  segments  at  the

sender and receiver altogether. That this Nagle’s algorithm and the Clark’s solution to see

the window syndrome. They are complementary, just like the earlier case like the Nagle’s

algorithm and the delayed acknowledgement can create a starvation that will not happen

here.

So,  the  Nagle’s  algorithm  it  solves  the  problem  caused  by  the  sending  application

delivering  data  to  TCP  1  byte  at  a  time.  So,  the  sending  it  prevents  the  sending

application to send small  segments.  Whereas,  the Clark solution,  here it  prevents the

receiving application for sending window update of 1 byte at a time. So, the receiver is

receiving application fetching the data from the TCP layer 1 byte at a time for that you

will not send immediate window update message.

There  is  certain  exception  to  that  because;  whenever  you  are  applying  this  Nagle’s

algorithm  and  the  Clark  solution.  Again  it  will  have  some amount  of  delay  on  the

application perspective. The application response time will be still little slow, because

you are waiting for sufficient data to get accumulated and then only create a segment.

Similarly,  on  the  receiver  side  you  are  waiting  for  sufficient  data  to  read  by  the

application and then only you will send the window update message, this may still have

some higher response time from the application perspective, may not be as high as like a

starvation which was there for Nagle’s algorithm and delayed acknowledgement. But, for



certain  applications  say  for  some  real  time  application,  you  want  that  the  data  is

transferred immediately by pressing the Nagle’s algorithm and the Clark solution; in that

case in the TCP header you can set the PSH flag.

So, this PSH flag it will help you to send the data immediately, it will help make inform

the sender  to  create  a segment  immediately, without  waiting  for  more data  from the

application side. So, you can reduce the response time by utilizing the PSH flag.

(Refer Slide Time: 18:43)

Well now, the second thing is that handling out of order segments in TCP. So, what TCP

does?  The  TCP  buffer  space  out  of  order  segments  and  forward  duplicate

acknowledgement. So, this is an interesting part of the TCP this concept of duplicate

acknowledgement. So, what TCP does that whenever you are receiving certain out of

order segment say for example, I am just trying to draw a ye so, I am trying to say this is

the receiver buffer. In the receiver buffer, we have received up to say this segment and

the receiver is say this is say 1024. It has received up to 1023 and it is expecting from

1024 and you have received the segment from say 2048 to something else.

Now,  at  this  case,  whenever  it  has  received  this  previous  segment,  it  has  sent  an

acknowledgement with sequence number as 1024; that means, the receiver is expecting

and segment starting from byte 1024, but it has received this out of order segment. So, it

will  put  the  out  of  order  segment  in  the  buffer,  but  it  will  again  send  an



acknowledgement with this same sequence number, that it  is still  expecting sequence

number 1024.

So, this acknowledgement we call it as a duplicate acknowledgement. So, this called a

duplicate  acknowledgement  or  in  short  form DUPACK.  So,  this  DUPACK,  we  will

inform the sender application that will ah; it has this particular receiver has not received

the byte starting from 1024, but it has received certain other bytes after that.

So, this has an important consequence in the design of TCP congestion control algorithm.

So,  we  look  into  the  details  of  this  consequence,  when  we  discuss  about  the  TCP

congestion control algorithm in the next class.

(Refer Slide Time: 21:14)

So, here is an example,  say the receiver  has received the bytes 0 1 2 and it  has not

received the bytes 3 and then it has received bytes 4 5 6 7. So, TCP sends a cumulative

acknowledgement with acknowledgement number 2 which acknowledges everything up

to byte 2.

So, once this four is received a duplicate ACK with acknowledgement number 3 that is

the next expected byte it is forwarded. This triggers a congestion control algorithm which

we look into the details in the next class, after time out the sender retransmits byte 3. So,

whenever the sender is retransmitting byte 3 so, you have received byte 3 here.



 So, the moment you have received byte 3 here, you have basically received all the bytes

up  to  byte  7.  So,  you  can  send  another  cumulative  acknowledgement  with

acknowledgement number 8; that means you have received everything up to 7 and now

you are expecting byte 8 to receive ok.

(Refer Slide Time: 22:15)

TCP has multiple timers implementation. So, let us look into those timers in detail. So,

one important timer it is TCP retransmission timeout or TCP, we call it in short form TCP

RTO. So, this retransmission timeout helps in the flow control algorithm. So, whenever

as segment is sent, this retransmission timer is started if the segment is acknowledged so,

if the segment is acknowledged before the timer expires the timer is stopped and if the

timer expires before the acknowledgement comes, the segment is retransmitted. So, once

you have transmitted a segment from the sender side you start the timer, say within this

timeout if you receive the acknowledgement, then you restart the timer otherwise once

timeout occurs, then you retransmit this segment.

So,  timeout  occurs  means,  something  bad  has  happened  in  the  network  and

simultaneously  it  also  triggers  the  congestion  control  algorithm that  we will  discuss

during the discussion of the congestion control algorithm, but it also retransmit the loss

segment. So, if it does not receive the acknowledgement within the timeout, it assumes

that the segment has lost.

 (Refer Slide Time: 23:36)



Now, the question comes that what can be an ideal value for this retransmit timeout. So,

how will you say this retransmit timeout? So, one possible solution is that to estimate the

round  trip  time  because,  you  have  sent  a  segment  and  you  are  waiting  for  the

corresponding acknowledgement. So, ideally if everything is good in the network, then

this segment transmission and the acknowledgement transmission it will take one round

trip time.

So, it is one round trip time it is expected to get everything, but because of the network

delay and something, you can think of that well I will say that the retransmission timeout

to some positive multiples of RTT. Some n cross RTT where n can be 2, 3; something

like that based on your design choice. But then the question comes that how you make an

estimation of RTT? Because your network is really dynamic and this RTT estimation is a

difficult for transport layer. So, let us see that why this difficult for transport layer.



(Refer Slide Time: 24:32)

So, if we make a plot something like this so we are we are trying to plot the RTT that out

trip time and the data link clear at the transport layer. So, the difference is that in case of

data link clear you have two different nodes, which are directly connected via link. So, if

these two different nodes are directly connected via link. So, how much time it will take

to send the message and get back the reply.

But in case of your network layer, in between the two nodes you have this entire internet

and then and another node and then you are trying to estimate that, if you are sending a

message to this end host and receiving back a reply what is the average round trip time it

is taking.

Now, if we just plot this round trip time, the distribution of this round trip time, we will

see that the variation is not very high whenever you are at the data link here because, it is

just  the  single  link  and  in  that  single  link  this  dynamicity  is  very  less  because,  the

dynamicity is very less for a single link you can make a good estimation, if you take the

average with that average we will give you a good estimation of that round trip time.



(Refer Slide Time: 25:37)

But that is not true for the transport layer, in case of transport layer because there are lots

of variability in between this intermediate network between the sender and the receiver.

So, your round trip time varies significantly so the variance in round trip time it is very

high.

So, if you just take an average, the average will never give you a right estimation it may

happen  that  well,  the  actual  value  falls  somewhere  here  and  there  is  a  significant

deviation from the average. And if you say retransmission timeout by considering that

RTT estimation you will get some spurious RTO’s. So, the solution here is that you use a

dynamic algorithm that constantly adopts the timeout interval, based on some continuous

measurement of network performance.

 (Refer Slide Time: 26:27)



So,  how  will  you  do  that?  So,  to  do  that  we  have  something  called  the  Jacobson

algorithm proposed in 1988 which is used in TCP. So, the Jacobson algorithm says that

for each connection TCP maintains are variable called SRTT the full form is Smoothed

Round  Trip  Time  which  is  the  best  current  estimate  of  the  round  trip  time  to  the

destination.

Now, whenever your segment whenever you are sending a segment you start a timer. So,

this timer have two different purpose like it can you it can be used to trigger the timeout

and at the same time it can be used to find out that how much time it take to receive the

acknowledgement.

(Refer Slide Time: 27:09)



So, whenever you have say sent a sent a message say this is the sender this is the receiver

you have send the segment and you have start the timer. So, the timer the clock will keep

on ticking. So, if you receive the acknowledgement here so at this stage you can think of

that well this the timer stops here and this difference will give you an estimation of round

trip time. But if you do not receive this acknowledgement, then after some timeout this

timer expire say, here and once the timer expires you retransmits the segment. 

So, it can be used for two different purposes this same timer. So, ah; so, you measure the

time if you receive back an acknowledgement and you update the SRTT as follows. So,

SRTT would be some alpha times the previous estimation of SRTT plus 1 minus alpha of

this  measured  value  R.  So,  this  algorithm  this  mechanism  we  call  as  exponentially

weighted moving average or EWMA. Now alpha is a smoothing factor that determines

that how quickly the old values are forgotten like what weight you are going to give in

the old values typically in case of t TCP Jacobson’s set this alpha to a value of 7 by 8.

 (Refer Slide Time: 28:39)

Now, this EWMA algorithm has a problem like; even you give a good value of SR SRTT,

choosing a suitable RTO is nontrivial. Because the initial implementation of PCP it used

RTO equal to two times of SRTT, but it has found out that still there is a significant

amount  of  variance  say  ah;  from  the  practical  experience  people  have  seen  that  a

constant value, this constant value of RTO it is very inflexible because, it fail to response

when the variance went up.



So, if your RTT has a measured RTT has too much deviation from the estimated RTT,

then you will get the spurious RTO. So, in case your RTT fluctuation is high you may

lead to a problem. So, it happens normally at high load so when your network load is

very high your RTT fluctuation will become high.

So, in that case the solution is that apart from the average one, you consider the variance

of RTT during the RTO estimation. Now how we consider the variance of RTT?

(Refer Slide Time: 29:41)

Now, to consider the variance of RTT so, you update the RTT variance variation which is

termed  as  RTTVAR  as  follows.  So,  RTTVAR  will  be  equal  to  beta  time  previous

estimation of RTTVAR plus 1 minus beta of current estimation of the variance, that is the

difference between current estimation of the RTT and the measured RTT that will give

you the current variance and we set beta equal to 3 by 4.

Now, you estimate the RTO as follows so, you will take the SRTT value so; that means,

the estimation of the round trip type into plus 4 times of RTT variance. So, you are here

considering the variance as well so, if your network load becomes high. So, the system

will get adapted to this variation. Now a question may come to in your mind that why 4?

So, god knows so, why 4 so, it was somehow arbitrary. So, Jacobson’s paper if you look

into the Jacobson paper that had deal with this RTO estimation, in that case it is full of

many such clever tricks.  So,  they have used integer  addition subtraction and shift  to

make all this computation lightweight.



So, he has used this value 4 s o, that 4 is 2 square.  So, you can apply the binary shift

operation  to  make  this  computation.  So,  that  is  just  a  reason possibly  Jacobson has

utilized all this values and set this values set this particular.

(Refer Slide Time: 31:14)

Now, another question comes which is like how will you get the RTT estimation when a

segment is lost and retransmitted again. If a segment has lost and retransmitted again,

then  you will  not  get  the  proper  estimation  of  RTT because  this  segment  you have

transmitted the segment. So, the segment has lost you have started the timer here. So,

there is a time out you again after the timeout we transmitted the segment and you got

the acknowledgement.

Now, if that is the case, then this will; obviously, not give you an estimation of the RTT

because in between the segment got lost and you have made a duplicate transmission of

the same segment.

 (Refer Slide Time: 31:56)



Now, to prevent this Karn’s provides an algorithm and the Karns algorithm says that do

not update the estimates on any segments that has been retransmitted. So, you do not

update your RTT estimation whenever you are retransmitting a segment. And a timeout it

is doubled on each successive transmission until the segment gets to through the first

time. So, it is just like that once you have set a set a timer so, once you have set a timer

say you got a timeout.

(Refer Slide Time: 32:17)

You retransmit the segment then you set say this was the value of RTO, but the next time

you set is as 2 times RTO. So, you wait for more time to get back the response, if you get



back the response by that time it is good if you are not getting that then you make it 4

times the RTO.

So, that way you increment the RTO until you get back the acknowledgement whenever

you are getting the acknowledgement again you reset it to the original implementation of

the transmission timeout.

(Refer Slide Time: 32:56)

So, there are other TCP timers like this persistent TCP timer, which avoid deadlock when

receiver buffer is announced as 0. So, after the timer goes off they send a forward flow

packet to the receiver to get the updated window size there is something called Keepalive

timer. So, this Keepalive timer it closes the connection when a connection has been idle

for a long duration. So, you have set up a connection at not sending any data. So, after

this Keepalive timer it will go off and then the time wait state which we have seen in

case of connection closer. So, you wait before closing a connection which is in general

twice the packet lifetime.

So, this is all about the flow control algorithm and different set up of your TCP timer

values.  In  the  next  class  we  have  we  will  see  how we apply  this  loss  or  duplicate

acknowledgement  that  we  have  seen  here  for  the  management  of  TCP  congestion

control.

Thank you all for attending this class.


